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ABSTRACT OF DISSERTATION

POST-CAPTURE SYNTHESIS OF IMAGES USING MANIPULABLE
INTEGRATION FUNCTIONS

Traditional photographic practice, as dictated by the properties of photochemical
emulsion film, mechanical apparatus, and human operators, largely treats the sen-
sitivity (gain) and integration interval as coarsely parameterized constants for the
entire scene, set no later than the time of exposure. This frame-at-a-time capture
and processing model permeates digital cameras and computer image processing.

Emerging imaging technologies, such as time domain continuous imaging (TDCI),
quanta image sensors (QIS), event cameras, and conventional sensors augmented
with computational processing and control, provide opportunities to break out of the
frame-oriented paradigm and capture a stream of data describing changes to scene
appearance over the capture interval with high temporal precision. Captured scene
data can then be computationally post-processed to render images with user control
over the time interval being sampled and the gain of integration, not just for each
image rendered but for every site in each rendered image, allowing the user to ideally
expose each portion of the scene. For example, in a scene that contains a mixture of
moving elements some of which are more brightly lit, it becomes possible to render
dark and light portions with different gains and potentially overlapping intervals,
such that both have good contrast, neither one suffers motion blur, and little to no
artifacting occurs at the interfaces.

This dissertation represents a preliminary exploration of the properties, applica-
tion, and tooling required to capture TDCI streams and render images from them in
a paradigm that supports functional post-capture manipulation of time and gain.

KEYWORDS: Computational photography, Exposure, Image capture, Postprocess-
ing, Video Processing
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Chapter 1 Introduction

This work re-considers the purpose and mechanism of cameras. In scientific applica-
tions, the purpose of a camera often is to count and measure properties of photons.
In contrast, classical photography typically regards a camera as a tool to capture an
image which reflects the appearance of a scene over a particular exposure interval,
as sampled using photons. Generalizing this second view, a camera is a device that
creates a model of scene appearance. Under this premise, the pixel value at each
point is determined by the arrival rate of photons at that site. Because photon ar-
rival is a discrete random process in which the arrival rate varies over time, scene
appearance changes are detected by recording a significant change to the arrival rate.
Modeling scene appearance is thus inherently frame-less; the ideal model is composed
of a time-varying function for each sensel.

Conventional cameras perform correlated sampling of all sensels over a single
fixed exposure interval, resulting in a frame in which each pixel value is determined
by the number of photons that arrive during the exposure at the corresponding sensel.
This behavior discards potentially useful timing information and reduces the quality
of the estimate of scene appearance. For example, as illustrated in figure 1.1, if
a particular sensel has no photons arrive during a one second exposure interval,
correlated sampling will determine that the value at that site is zero. However, if
one photon arrived in the second before and another the second after, the expected
value at that site for the exposure interval is an arrival rate of two photons per
three seconds. Subsequently computationally rendering frames from a captured per-
sensel continuous model produces a more accurate result than the standard correlated
sampling of a conventional camera capturing frames.

Because this rendering is after-the-fact, decisions about exposure parameters can
be made, and re-made, with information from the scene at the moment of capture, and
the exact time interval to be sampled can be arbitrarily adjusted after the fact. The
work presented here explores the required changes to cameras to support this mode
of capture, and extends the freedom afforded by post-capture rendering, proposing
and demonstrating the possibility of composing images not only from fixed intervals,
but by integrating the scene model over arbitrary functions in time, space, and gain.

1.1 TDCI

The work described here is built on and advances the new camera model known as
Time Domain Continuous Imaging (TDCI). TDCI treats a digital image sensor as
a vast array of millions of individual data channels, one for each sensel, representing

Figure 1.1: Two photon strikes over three time intervals
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changes in the incident light at that site over time. For each site, the output of TDCI
is a waveform akin to individual audio channels or channels of an oscilloscope.

Instead of attempting to obtain a single, correlated image representing the average
value over a period, TDCI stores a compressed form of the entire waveform at each site
— a full model of the evolution of the scene over time — and later computationally
samples those waveforms to form images. The storage format for a TDCI system is
not a series of frames, or even a series of samples, but a description of how the scene
content changes over time: an Image Evolution model (IMEV).

The publication record for TDCI technology begins in 2014 [1] with “Frameless,
Time Domain Continuous Image Capture” and extends through several publications
that provide the context for the work reported here:

1. “ISO-Less?”(2015) [2] established that the gain properties of extant sensors are
suitable to support the model

2. “Scene Appearance Change As Framerate Approaches Infinity” (2016) [3] which
verifies the relationship between sample rate and scene data required for TDCI
systems to operate at reasonable data-rates, further noting that the lighting
sets an ultimate limit on how much scene appearance data can be recorded

3. “Shuttering Methods and the Artifacts They Produce”(2019) [4] explores the
artifacts and temporal skewing created by various shuttering mechanisms

4. “Temporal Super-Resolution for Time Domain Continuous Imaging” (2017) [5]
uses various properties, including rolling shutter timing, to derive more precise
temporal data from conventional camera output

Using current sensor technologies, the channels will be wildly under-sampled. The
shutter angle of the camera, the ratio of ADCs to sensels, the readout bandwidth from
the sensor, and a multitude of other factors make it impossible to truly record the
entire wave at each site. The sampling is ideally in uncorrelated content-dependent
patterns, so rather than a simple Nyquist or Nyquist-Shannon basis, the general-
ized limit for uncorrelated sampling later established by Landau [6] applies. In re-
cent decades, this same observation that capturing image data in temporally random
and/or uncorrelated ways is desirable has generated a subfield generally referred to
as “compressive sensing” [7]. A number of related concepts are discussed in section
1.2.

TDCI hinges on the observation that factors such as scene constancy and photon
shot noise limit the information content of those signals. Thus, it is possible to record
a significantly reduced amount of data and still capture all the information provided
about the evolution of the scene appearance over time as sampled by the arriving
photons.

In TDCI, the captured scene model is predictive: a rate of change or expected
value of the light at each site is constructed from successive samples, and updated by
subsequent sampling. Records — output data — are only generated when the light
arriving at a specific sensel differs significantly from the expected behavior. Only a
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change to the rate of change, or a second derivative of the incident light, generates
a data record in the stored waveform. These records are uncorrelated in time across
the sensor; there is no concept of a frame in this model. Ideally, each site is sampled
at a rate sufficient to capture the information content of the incident light, and no
more. That rate can and will vary across the scene and sensor.

Pixel Value Error Model

The TDCI model relies on an understanding of sampling error in the capture device
to create the scene model with a practical sampling and data-rate. This pixel value
error model is based largely on the the work described in “Scene Appearance Change
As Framerate Approaches Infinity” [3], which specifically investigated the fall-off in
additional scene information added by increasing the framerate used to sample the
scene. This property was demonstrated largely by observing that the compressed size
(using both TDCI and conventional H.264 compression) of the recording does not
grow linearly nor continuously with the frame rate, but instead appears to approach
a fixed bound for any given compression scheme. That bound is determined by the
actual content and evolution of the captured scene as made observable by the lighting.

This highlights a critical assumption that underpins the TDCI model. Photog-
raphy is not about capturing photon properties, but is the practice of statistically
sampling scene appearance via photons. Thus, scene changes that happen faster than
photons can sample them are inherently unknowable. Unknowable changes are simply
assumed not to happen. This assumption is henceforth called scene constancy.

This assumption has important implications, including the observation that statis-
tical variations in photon emission, typically referred to as “photon shot noise,” bound
the useful temporal resolution with which the scene can be sampled. If the temporal
resolution of sampling is increased beyond the fastest statistically-significant change
to the photon arrival rate created by the scene and lighting conditions, increasing the
sampling rate cannot increase the amount of information captured about the scene.
Conversely, the ability to sample high-frequency changes in a scene is bounded by the
lighting, as a statistically significant number of photons must be sampled to reliably
observe and record any change.

Based largely on the results in this initial work, the TIK tooling [8] which forms
the basis for much of the ongoing TDCI research uses a surprisingly straightforward
method to generate a suitable error model. A scene which is not changing over time,
and is lit consistently over that period, is captured using the camera and configuration
for which the error model will be applied. That configuration includes selection of
camera parameters, especially ISO sensitivity. The invariant scene capture could be
a series of still images, a conventional video, or even an IMEV model.

The goal of the analysis of the static scene capture is to create a Pprobability
Density Function (PDF) that can be used to statistically determine whether a new
value for a sensel represents an additional sampling of the same scene content or a
sampling of new scene content now in that position. In other words, the PDF attempts
to answer the question: is this new sensel reading different from the previous reading
by more than sampling noise? If so, a new reading creates a new change record in the

3



Figure 1.2: RX100IV Noise Model

IMEV. If not, the new reading simply updates the estimate of the sensel value in the
still active change record, producing a more accurate value in the record by weighted
averaging of the new reading with the value previously in the change record.

In TIK, the PDF is encoded as a square matrix. The Y index represents the ideal
value of a sensel — with no noise. The X index represents the value actually read from
the sensel. The matrix entry at position X,Y approximates the conditional probability
that sampling noise caused the value X to be read when the scene content was actually
Y. The probabilities do not just model photon shot noise, but the combined impact
of all noise sources on the values read. In most digital cameras, the sensor is enabled
to distinguish colors by imposing a Color Filter Array (CFA) that filters the light
so individual pixels see only red, green, or blue; this filtering results in potentially
different noise characteristics for the different color channels. Thus, the PDF is
actually three matrices: one for each of the red, green, and blue color channels. The
PDF matrix used for a sensel is the one for the color channel it senses.

These three PDF matrices can be compactly represented, manipulated, and vi-
sualized as a single three-color square image. Since the noise model is empirically
determined and imperfect, it was found that scaling the PDF matrix to 256 × 256
(i.e., eight bits per sample) and scaling the probabilities 0..1 to the range 0..255 still
produced good results. TIK can compute, store, load, and apply these “pixel value
error models” as P6 PPM image files, as described in detail in subsection 1.1. A
perfectly noiseless PDF would look like a bright diagonal line from 0,0 to 255,255.

An example of a TIK PDF noise model is shown in figure 1.2. The tik tool
generates a noise model when called with the -e option, as in tik -e -oErrMod.ppm
InputFile.mp4. This map was generated from a Sony RX100IV camera, shooting

960FPS, with 1/1000 of a second shutter speed, and an unrecorded automatically-
selected ISO under mediocre indoor lighting. The resulting video is visibly noisy; an
extracted frame is shown in figure 1.3. The relatively large width of the diagonal

4



Figure 1.3: One frame of the input used to generate the noise model in figure 1.2

Figure 1.4: TIK’s Default Noise Map

is commensurate with observed noise, and the red and green color fringing at either
corner indicates difference in the noise properties of the red and green channels. To
illustrate the specificity of these noise models, an error map generated from a capture
with the same device at the same framerate and under similar lighting conditions,
but with a higher shutter angle at 1/250 of a second was included as Figure 2 in
earlier work [8], and shows wildly different noise properties.

If TIK is run without a specified noise model, it automatically generates the
generic model shown in figure 1.4. This model is not a precise match to any partic-
ular camera, but provides an adequate generic approximation for situations where a
specific noise model is not readily available. Several of the examples in this document
were generated using this default noise model.

TDCI Implementations

There have been a number of publications related to implementations of TDCI sys-
tems. The most consequential has been a simulation testbed, TIK, slightly unfortu-
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Figure 1.5: TIK Data Model

nately, a dual-use acronym, referring to both the Temporal Imaging from Kentucky
tools, and the Temporal Image Kontainer format they operate on. The initial devel-
opment of TIK is documented in “TIK: a time domain continuous imaging testbed
using conventional still images and video” [8].

The TIK software and formats create a testbed for performing time domain con-
tinuous imaging using conventional still images and/or video captures — and it was
a key code infrastructure modified to create prototypes in the current work. The
existing TIK tools consist of a set of open-source programs and specifications that
allow the generation of noise models, rendering of IMEVs from series of frames, and
the rendering of virtual exposures from existing IMEVs.

These three functions are performed offline, using recorded images and taking
nontrivial time and computational resources to perform the renderings. Figure 1.5
shows roughly how TIK integrates video data into a frame. Average values for each
pixel are known during each frame, as that is the recorded pixel value for that frame.
The behavior between frames is approximated as a linear transition from the previous
average value to the next. An output image (frame) can be generated from a start
time for an interval by summing the duration-weighted estimated values and dividing
by the total time represented.

TIK File Formats

The TIK formats extend the NetPBM [9] family of image formats. The NetPBM for-
mat suite was developed in the mid 1980s by Jef Poskanzer. NetPBM formats include
Portable [Bit — Grey — Pix] Maps, as well as several less-common extensions, such
as the PNM (Portable Any Map) format, which allows for arbitrary pixel encodings.
Each standard NetPBM format type can be encoded in two modes. ASCII mode,
which initially served as a way to safely transmit image data through plaintext-only
channels such as email, and now provides a convenient representation for direct ma-
nipulation by a human or primitive text-oriented tools. Binary mode, which is more
compact, and also very convenient to directly manipulate when memory-mapped.
The NetPBM formats all begin with an ASCII magic number, the meanings of which
are described in 1.1. Textual comments can also appear in the file header in the form

6



Type Magic Number Extension ColorsASCII Binary
Portable BitMap P1 P4 .pbm 0/1 (White/Black)
Portable GrayMap P2 P5 .pgm 0-255 (Grays)
Portable PixMap P3 P6 .ppm 0-255 (RGB)

Table 1.1: NetPBM Magic Numbers

of lines beginning with #.

The TDCI extensions exploit the comment mechanism in the NetPBM format
to generate files which appear as valid NetPBM images to tools expecting them,
but contain extra data and metadata for TDCI applications. This enables image
previews, appropriate MIME behavior, and other user-friendly features with no ad-
ditional development effort. Some common tools, such as ffmpeg or ImageMagick’s
display support concatenate NetPBM files, which can be used for automatic support
of uncompressed TDCI data. This header format is so flexible that it can be used
to prepend appropriate metadata to formats ingested by the TIK tools which are
not able to carry their own, such as folders of frames or conventional video files, by
including a .tik containing only metadata.

The TDCI extensions to NetPBM start with a TDCI version header, which must
be the first comment in the NetPBM, of the form:
# TIK V version format [parameters]
where version is an eight-digit ISO-style date representing the date on which the
TIK tool, and format is which kind of encoding is used in this file, as well as any
parameters to that format. Fields are delimited by one or more whitespace (space or
tab) characters. For example, a file beginning
# TIK V 20160712 RGB
would signal a file compliant with the 20160712 version of the TIK specification,
containing a normal P6 PPM file, a 0 byte, and a stream of RGB-encoded pixel
updates. The 20160812 TIK standard has been published as a part of TIK: a time
domain continuous imaging testbed using conventional still images and video [8].

Another early TDCI implementation was an in-camera capture mechanism de-
scribed in “A Canon Hack Development Kit implementation of Time Domain Con-
tinuous Imaging” (2017) [10]. This implementation builds on CHDK (the Cannon
Hack Development Kit) to encode a IMEV directly in a consumer digital camera.
The CHDK TIK implementation is necessarily extremely minimal and limited , as
the target cameras for this method are, unfortunately, not particularly well suited for
TDCI capture. They lack any sort of low-level sensor addressing and are not com-
putationally powerful enough to cover for their deficiencies. The Canon ELPH115
and Canon ELPH160 cameras used for the initial implementation each contain only a
pair of ARMv5TE processors at about 83 MIPS, and 36MB of RAM, which supports
a memory bandwidth of roughly 59Mb/s for writes and 21Mb/s for reads.
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These restrictions limit the TIK captures performed in-camera to the live view
resolution of the host camera, 720x240 in the case of the original targets. Operating on
the live view stream presents a number of difficulties and advantages. As a substantial
benefit, it frees up the RAW buffer, the section of main memory used to store full-
resolution, full-depth sensor data before it is converted to JPEG and/or written out.
The raw buffer is the bulk of otherwise unallocated main memory in the camera.
In the case of the ELPH160, the 20MP sensor at 12bpp consumes roughly 30MB of
main memory, leaving only roughly 3MB for user code if it is in use. Other than the
obvious extremely restricted resolution, the main disadvantage is that the live view
data is delivered at an inconsistent framerate with data delivered in a peculiar packed
YUV format which requires decoding, and only provides one U and V value for each
group of 4 pixels.

The CHDK TIK capture mechanism is built on top of the motion detect hooks
in CHDK, exploiting the similarities between TDCI and various established motion-
extraction techniques discussed further in 2.4. The latest 20161130UYVYYY imple-
mentation even offers the ability to render frames from specified intervals, albeit in
an extremely awkward and limited way, producing images encoded in a format the
camera itself is unable to display.

1.2 Related Work

Though the techniques discussed in this section differ in method — as they all build
on a presumption of correlated frames as both input and output rather than per-pixel
change models — they rely on similar principles or attempt to produce similar results
to applications of TDCI suggested in this and prior work.

Video Resampling

The area of research with the largest conceptual overlap may be video resampling —
using an input video at one framerate to synthesize a video at another, possibly higher,
framerate. For example, it is common that traditional film for cinema projection is
shot at 24FPS (Frames per Second). However, in the United States the TV broadcast
standard, NTSC (National Television Standards Committee) [11], initially formulated
in 1941 and updated for color in 1953, specifies a framerate of 30 FPS for black and
white and 29.97FPS (to allow the color data to be inserted in a backward-compatible
way [12]) for color at 525 lines of vertical resolution, split into two interlaced fields
for 262.5 lines supplied at 60FPS. Other systems assume other frequencies. The
PAL (Phase Alternating Line) standard common in European broadcast television
specifies a frequency of 25FPS in the form of two alternating, interlaced fields at
50FPS. Converting content filmed in a 24FPS format for broadcast therefore requires
significant adjustment to the content.

For PAL conversion from 24 to 25FPS, several simple options exist. One can
simply speed up the content by 1/24 ≈ 4.1%, and hope the viewers don’t notice.
More commonly, frames are repeated: each 24FPS input frame can be used to supply
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two 50i fields, except for once every half second where three fields are derived from
the same input frame. This frame repetition can produce a noticeable visual stutter.

NTSC conversion from 24FPS input poses more of a problem. A 30/24 ≈ 25%
speedup will be extremely evident, so simply adjusting the playback rate as with 24
to 25 conversion is not an option. The traditional method for converting 24FPS input
for NTSC ≈ 30 FPS playback is the use of “3 : 2 pulldown” creating a 60i format by
splitting each frame of 24FPS input into two fields, then duplicating one of fields of
each frame in a 2− 3− 2− 3... pattern to produce an approximate 60i format, albeit
with considerable motion smoothing and frequent stutters.

Modern computer-driven methods of converting between framerates tend to rely
on an optical flow model [13] — a model of the motion of features and edges in
the recorded scene. Instead of cherry-picking frames to down-convert, or duplicating
frames to up-convert, the amount of deformation in the scene during the desired target
interval can be estimated from analysis of the input frames, and additional frames
can be generated to insert at the appropriate intervals using a form of interpolation.

Optical flow models are also used in video compression tasks. The H.261 [14] video
encoding standard which evolved into MPEG-1 video encoding in 1992 [15] was the
first practical, widely deployed, video encoding standard. H.261 relies, as most subse-
quent compressed video formats do, on a mixture of discrete cosine transforms similar
to common single-image compression techniques to compress individual frames and
motion compensation for inter-frame compression. General purpose computers at the
time of its adoption were incapable of real-time encoding or decoding of compressed
video, and lacked the working memory to operate on more than a few frames at a
time, so the entire encoding/decoding process was initially performed via offload to
dedicated special-purpose hardware which returned frames.

This separation of concerns has continued into the modern era. Notably, in the lit-
erature, the motion-aware inter-frame models used for framerate shifting are typically
not the optical flow model which is part of in the compressed format the data is stored
in, but a separate model constructed from frames rendered from the compressed for-
mat then re-analyzed. A number of methods of re-deriving optical flow models from
rendered frames are discussed in [16]. More recently, a number of convolutional mod-
els [17] have been developed. These tend to be extremely computationally expensive,
requiring large amounts of memory, time, and often additional complications such as
segmentation or reduction from a full 2D model of the frame to a 1D line model in or-
der to resynthesize video of useful resolution. The more complicated models are also
prone to “hallucinate” details that did not exist in the source scene, particularly if
the model is trained on data other than the content whose framerate is being shifted.

Interpolation based models, even ones that rely on elaborate convolutional inter-
polation, specifically deal with video content: they model the contents of the frames,
but do not leverage knowledge of the capture device. For example, there is no model-
ing of noise nor even of the temporal period represented by each frame (shutter speed
or shutter angle). In 2017, a paper “Temporal super-resolution for time domain con-
tinuous imaging” [5] demonstrated how the temporal resolution of scene data can be
increased by using an awareness of the shuttering behavior and error model of the
capture device in combination with sophisticated interpolation. This work was also
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rather atypical in that it treated temporal skew due to shuttering and readout as a
feature to be exploited for temporal information rather than a defect from an assumed
ideal of globally correlated sensing.

Even synthesizing a TDCI model from an input video, then re-synthesizing frames
from the IMEV model, offers a number of advantages over these techniques. A TDCI
model inherently models key properties of the capture device, drawing a distinction
between scene content and artifacts from the capture device which do not reflect scene
content.

In much the same way that convolutional interpolation schemes benefit from in-
cluding data from a large range of input rather than simply from adjacent frames,
a TDCI model-driven re-rendering can leverage captured scene data for extended
virtual exposure intervals, even allowing a user to render frames with an effective
shutter angle greater than 360◦. A TDCI model is also considerably less computa-
tionally intensive to derive and generate frames from than convolutional techniques,
and operates only on data from the target scene, eliminating the risk of detail not
present in the scene being injected during manipulation.

Processing of Multiple Still Images

In addition to video-oriented tools, there are various algorithms designed to process
image information from multiple still images of the same scene. Generally, the output
of these is a single rendered image.

Shot Selection

Perhaps the simplest multi-shot processing mechanism is Nikon’s “Best Shot Selector”
(BSS) [18]. It automatically takes a series of images when the operator hits the shutter
button, then applies a simple sharpness estimation heuristic to select the “best” image
from the set of exposures. This class of techniques leverages the near-zero marginal
cost of taking, inspecting, and discarding additional images with a digital camera. It
is surprisingly effective in reducing blur from camera shake, largely because camera
shake is a stochastic process and some captures will likely hit motion minima.

Buffering

Although it is complicated by requiring user input, it is conceptually even simpler to
have the camera capture a sequence of images during a time interval and then have
the user select which to retain. This feature is primarily to reduce the probability of
missing a shot due to the operator’s reflexes or lag in the camera. Camera lag can
come from multiple sources, including not only delay in initiating the exposure after
press of the shutter button but also lag in presenting an electronic live view to the
photographer. Typically, the camera implements this feature using a ring buffer of
captured frames. At half press of the shutter button, the buffer begins to fill with
captured frames, and captures continue until shortly after the full press of the shutter
button. Thus, the buffer contains many images captured around the time at which
the full press occurred.
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Slight variations on this technique are available under a wide variety of market-
ing names from every major camera manufacturer: Fujifilm Pre-Shot, Olympus Pro
Capture, Nikon Pre-Release Capture, Sony Predictive Capture (in cell phones), and
Canon and Panasonic Pre-Burst [19] are all implementations of this mechanic. Again,
this feature is enabled by the low cost and high speed of shooting digital, and comes
with a large variety of limitations.

The temporal spacing of the shots is limited by the exposure time and the readout
bandwidth of the device. Each frame’s exposure parameters are set conventionally
before they are captured, so pre-exposure buffering does not help to correct exposure
parameter related problems — if the frames are not properly exposed, or the relation-
ship between shutter speed and scene motion was not as desired, the result is simply
a variety of badly exposed images to choose from. The timing of each frame is also
fixed; if the exact moment the operator was trying to capture fell between the burst
of exposures, there is no after-the-fact recourse to re-time the capture. Most cameras
do not allow for shooting RAW when this feature is in use because they simply do
not have enough high-speed buffer to keep multiple RAWs in memory at once. For
cameras using mechanical shutters, the rapid repeated action of the shutter can be
disturbingly loud while also imparting shake to the camera; thus, these modes are
often restricted to electronic shuttering only.

A TDCI system, particularly one enhanced with sophisticated functional control
of exposure parameters, makes a better alternative to pre-shot features in a variety
of ways. Because each rendered frame in such a system is integrated from an interval
selected after the time of capture, it is possible to independently and repeatedly alter
the start time and exposure length for a rendered frame with fine-grained control.
This ensures that the desired time interval can be represented in an image, whereas
that times period might be unsampled using a burst. For example, a 60FPS burst shot
with a shutter speed of 1/1000s is missing 94% of the action. Furthermore, because
the gain of a frame rendered from an IMEV can be controlled during the rendering
rather than capture process, the effective “film speed” of the captured frame can be
adjusted in concert with the interval adjustments, resulting in better exposed images.

Dark Frame Subtraction

Instead of picking a single image, Dark Frame Subtraction combines two images to
eliminate fixed pattern noise, excessively bright pixels caused by sensel leakage de-
fects that are sensitive to sensor temperature as well as exposure duration. After
shooting the scene normally, a second image is captured with the same exposure
settings without opening the shutter. Since the second exposure only has leakage
contributing to the image, subtracting that image from the first image tends to can-
cel out the brightness caused by leakage. Despite the simplicity, this method can
yield significant improvements in image quality, particularly for very long exposures
under low light conditions, and it is widely used for astrophotography. Dark frame
subtraction is easily implemented within a camera; in fact, most modern cameras
enable dark frame subtraction by default for exposures over one second in duration.
Dark frame subtraction is also frequently referenced under other names based on it’s
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common application, such as the “Long Exposure Noise Reduction” option in Canon
EOS firmware.

Dark frame subtraction can be thought of as an extremely simple sensor noise
model. A TDCI system inherently, at the time of encoding, develops are more so-
phisticated error model which can address noise features which vary with time or
scene content.

Bracketing and Stacking

Ratcheting up the sophistication of multi-shot features further, modern digital cam-
eras with computer-controlled optical paths often have built-in support to take rapid
bursts of exposures while automatically varying exposure settings. These methods are
typically referred to as “HDR Bracketing,” which allow capture of a High Dynamic
Range image by taking exposures with an exposure parameter quickly and automat-
ically varied in steps around an estimated center value. The bracketed exposures
are then “stacked” to form a final image combining the correctly-exposed portions of
multiple frames to extend the dynamic range of the image. This class of technique
offers both dynamic-range enhancement and noise reduction.

These methods were developed quickly after the advent of reasonably high-quality
digital image sensors in cameras under computer control, as outlined in the 1997 SIG-
GRAPH paper “Recovering high dynamic range radiance maps from photographs”
[20]. Even this early work addresses one of the weaknesses in bracketing techniques:
the images must be precisely aligned, either out of the camera or by later manipula-
tion, in order to properly merge features from the individual frames. Characterizing
the response curves of the camera, the relationship of the read-out values in the indi-
vidual color channels to the incident light, allows computing an approximation to the
absolute radiance values in the scene. Thus, manipulation of the tonal range, similar
to control of exposure, can be done in postprocessing. “Tone mapping” even allows
rendering an image representing a wider range of brightness than the output image
can directly represent.

Variations on automatic HDR bracketing have become standard fare in modern
digital camera firmware. A community-maintained list of the number, speed, and
stride (in EV) of the frames taken by various camera models is maintained at [21].

Many subsequent developments in bracketing largely focus on automatically de-
termining appropriate exposure values for the components [22]. That work examines
large sets of photographs taken with different shutter speeds, HDR stacks subsets of
them, and analyzes the results to extrapolate an algorithm for estimating optimal
spacing and quantity of different shutter speed exposures for an HDR bracket, based
on a single auto-exposed image of the scene.

Even more sophisticated work has considered HDR burst design as a multivariate
problem [23]. Digital cameras can dynamically vary ISO as well as shutter speed and
aperture, and computers can quickly solve (or at least estimate) complex optimization
problems to determine the best use of the available parameters and constraints. An
example of that design space is “Noise-optimal capture for high dynamic range pho-
tography” [23] which applies mixed integer programming techniques for estimating a
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time and/or noise optimal capture sequence which can obtain a lower noise, wider dy-
namic range result and do so in fewer exposures. This class of work demonstrates that
careful computational manipulation of a digital camera device in ways that do not
map directly to traditional film photography practices can readily produce superior
results.

This class of bracket-and-stack technique, however, suffers from several serious
limitations. The main limitation is the underlying assumption that the scene appear-
ance is constant. With a perfectly still scene, hand-held shots will require alignment
processing even if electronic shuttering, image stabilization, and other methods are
used to minimize shake. When motion occurs only in portions of a scene, conventional
HDR methods fail for the affected areas. In contrast, the IMEV approach advocated
here can make use of the per-pixel periods of stability, obtaining somewhat less dy-
namic range for things changing quickly, but still obtaining some benefit. Of course,
HDR bracketing requires that every part of the scene is properly exposed in at least
one of the series of frames, which it cannot easily guarantee; in contrast, TDCI cap-
ture can ensure that the full dynamic range that can be sensed by the camera is
always available for postprocessing use.

Of course, recent efforts have been made to use convolutional neural networks
(CNNs) trained on pairs of LDR and HDR images to estimate a likely HDR image
from a single LDR frame by predicting likely values for saturated, underexposed, or
otherwise clipped content [24]. Architectures for doing so vary by level of supervi-
sion, whether the HDR image is generated directly or by creating a set of estimated
exposures and stacking them, and whether the tool primarily fills detail in saturated
or underexposed regions [25]. These methods are, as all such approaches, computa-
tionally expensive, and prone to produce images which are convincing rather than
faithful, potentially containing features not found in the scene data.

Computational Multi-Shot Alignment

The model and processing discussed in the current work uses the evolution of pixel
values over time to detect scene changes, but most earlier work treats detection of
scene change as an alignment problem. The underlying assumption is that the scene
appearance itself is constant, but that the camera may be moving with respect to
the scene. Aligned images are assumed to be samples of the same unchanging scene,
so higher tonal resolution, greater field of view, and even super-resolution can be
achieved in postprocessing.

The use of alignment in HDR imaging was discussed in the previous section.
Panorama stitching expands the field of view by aligning multiple differently-

positioned exposures and compositing the scene portions covered by all the images.
Many stitching tools for this and other purposes have their lineage attached to Helmut
Dersch’s Panorama Tools (PanoTools) [26] which was first released in 1998. The
spread of PanoTools technology was hampered by a 1999 intellectual property dispute
with IPIX [27] who asserted that in PanoTools was engaged in copyright infringement
related to mechanisms covered by their patent US5185667A “Omniview motionless
camera orientation system”[28] — a dispute they later retracted due to evidence of
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prior work which may have invalidated their core patents — patents which were
subsequently sold to Sony during a bankruptcy proceeding in 2007 [29] and expired
in 2011. PanoTools technology was subsequently expanded upon by a community of
open-source contributors, and has been incorporated into a wide variety of plugins
for popular photo editing software as well as standalone tools like Hugin and PTGui.
Panorama stitching involves alignment at its highest level of complexity, since factors
like lens distortion must be corrected in order for a significantly-shifted scene view
to align. Many consumer cameras and cell phones incorporate panorama stitching
modes in which a series of exposures are captured as the user pivots the camera and
are then stitched into a single wide image.

Although the IMEV model does not recognize scene change the same way, it can
solve a problem with conventional panorama stitching: ensuring appropriate overlap
between images to stitch. Often, a user will sweep a camera too fast or too slow,
resulting in unstitchable images having too little or too much overlap. In contrast, a
TDCI capture can be used to generate ideally-spaced virtual exposures that can be
rendered as images and stitched by conventional means.

Alternatively, stitching can be used for super-resolution rendering that resolves
finer details by recognizing fractional-sensel offsets between captured images. A num-
ber of well-known techniques have been established going back at least a decade for
spatial super-resolution combining data from multiple frames, generally relying on fea-
ture alignment and (weighted) averaging and/or confidence modeling, as in [30] and
[31]. Images created by “sub-pixel alignment” generally require contrast enhancement
because each sensel in a capture overlaps multiple output pixels. Unfortunately, the
IMEV approach here would tend to treat subpixel movements as noise, making this
type of processing less effective. However, there is a modest potential improvement
in effective resolution from the fact the IMEV tends to reduce noise, thus increasing
detail contrast at the level of sensels.

Sophisticated Synthesis

Recently, a variety of highly sophisticated techniques using large numbers of exposures
and sequences of computationally expensive algorithms to radically expand the ca-
pabilities of compact sensors and optics have become popular, particularly in the cell
phone market. As an elaborate end-to-end example of such a system in widespread
use, in 2019, a group at Google published “Handheld Mobile Photography in Very
Low Light” [32] which describes the methods employed in sophisticated cell phone
cameras. Cell phones tend to have rich compute resources as compared to dedicated
cameras, so the idea is to leverage that to hide the relatively poor quality of the cell
phone camera’s tiny sensor. Smaller sensels more quickly reach photon shot noise
limits in low lighting, so averaging across a captured and aligned burst is a key way
to bring more photons into the computation.

The cited work largely avoids CNN-based techniques as they are too computa-
tionally expensive for the mobile environment, and instead combines several of the
above techniques, performing automatic estimation of the appropriate set of expo-
sures, including an extra factor of device motion limiting viable exposure times, then
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performs content-aware alignment and merging. It also uses pre-trained learning-
based models for white balance and tone mapping of the composite image, which
are relatively computationally inexpensive and unlikely to generate features not in
the scene as compared to methods which use “AI” techniques for frame composition.
Rendering from an IMEV inherently uses data from sampling more photons, thus, it
can be expected that a similar level of sophistication in processing would yield still
better results.

Non Frame-Oriented

Why is IMEV processing less common and less developed than frame-oriented pro-
cessing? Largely because frames are familiar. Correlated samples for the entire scene
or sensor area, i.e. frames, are attractive both because they are readily analogous
to the behavior of film, and because computer algorithms for the manipulation of
the dense matrix representations frames are most obviously encoded as are well un-
derstood. However, there are a number of costs associated with a frame oriented
model.

The most apparent cost is that unchanging elements must be resampled and re-
transmitted, wasting bandwidth and limiting maximum sample rate due to time spent
resampling or re-displaying this redundant data.

There is a long (albeit not widely adopted) history of attempting non-frame-
oriented incremental updates to display devices. As far back as 1994 in “Frameless
rendering: double buffering considered harmful” [33], the idea that making correlated
updates of an entire image is wasteful and prone to creating visual artifacts was
made explicit. In the same computational budget used to perform a double-buffering
scheme, a system of computing per-pixel differences then updating those that have
changed in random order was show to produce a superior visual effect. Even earlier,
some character-based “glass terminal” display systems adopted a similar technique
to save bandwidth and update time on slow serial links. Most famously, Gosling
Emacs used a redisplay mechanism based on a dynamic programming approach
to the string-to-string correction problem [34] to construct a minimal set of display
commands to update the state of a displayed buffer of text between states. This issue
is of ongoing concern, as with recent developments in the Linux display stack [35]
and algorithms for operating slow-updating displays like Eink [36].

Clearly, an IMEV representation could be used to directly drive a frameless output
device.

1.3 New Work

This work is built on the idea that digital cameras can — and should — be operated
in a paradigm in which they capture a scene model and render images from it with
functional post-capture manipulation of time and gain. In contrast to previous work,
the new contributions unique to the work presented in this document center on the
following concepts.
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The first and most important claim in this work is that the tonal properties of
a rendered image do not have to be determined by the exposure settings.
In most prior work the exposure settings — set at the time of capture — largely deter-
mine the tonal properties of the final image. In this new system, the tonal properties
are synthesized from a captured scene model and do not have a direct relationship
to the apparent capture and exposure parameters. Earlier systems which manipulate
tonal properties explicitly manipulate the tonal properties, a process typically known
as remapping, but this system produces computationally rendered virtual exposures
with their own resulting tonal properties.

The next claim in this work is that one should capture a model of evolution of
scene appearance over time rather than attempt to generate exposures directly
from the scene. The model used here is the TDCI IMEV discussed in section 1.1;
this work was part of and extended the concept and tooling for TDCI. The TDCI
IMEV model includes a notion of the error bounds due to sampling. The content of
the model can be thought of as a probability density function (PDF) [37] of the value
at the site — the value at the site is a time varying value with a time (and content)
varying error bound.

This work particularly investigated efficient ways to capture high quality IMEVs
by reprogramming extant camera devices. TDCI, as originally envisioned, required a
new and unique style of capture device which has not been realized, this work focused
on trying to marry TDCI and its potential to conventional imaging sensors. Though
much of the experimental tooling ingest video files, video makes a poor IMEV. A
video is made up of a series of frames: individual correlated samples of the average
value of the scene over a certain period. This has several disadvantages; a video does
not make use of a noise model, so there is no distinction between changes due to noise
and changes in scene content (though a reasonable noise model for the circumstances
of capture can be generated from a video, ideally of a static scene). Video also does
not accommodate irregular sampling: the entire scene is updated at some constant
frame rate, meaning sections of the scene which are slow moving relative to the frame
rate are redundantly sampled and stored, wasting bandwidth and therefore limiting
the frequency with which high-frequency content can be updated.

In particular, this work identified required changes to camera and imag-
ing pipelines to support the capture and rendering process. While previous
TDCI work has contained a variety of proposals on methods for capture and render-
ing, this work contained a deep investigation of how the structures of conventional
cameras can (and cannot) be adjusted to operate in a TDCI-type context. This work
operates in a context of capturing and rendering from a model of uncorrelated per-
pixel (rather than per-frame) changes. This allows both an elegant mechanism for
many operations which are analogous to conventional photographic and image pro-
cessing tasks — as well as a variety of new manipulations (described below) which
are impractical or impossible in the context of correlated frames representing average
values over a sampled interval. Much of this work focused on exploring, document-
ing, and attempting to modify the behavior of “prosumer” grade commercial camera
bodies, described extensively in section 3.12.
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The connection between capturing a scene model and generating images with tonal
properties independent of the capture process is to render images by computa-
tionally sampling the IMEV. Essentially, rather than integrating the incident
light over an interval to produce a frame at the time of capture, the independently
sampled incident light at each point can be computationally integrated after the fact,
allowing a much higher degree of flexibility and — critically — the ability to repeat-
edly re-render the same span of scene content with different settings. This allows the
user to expose, evaluate, and re-expose all or part of a scene an indefinite number of
times, after the time of capture, until they obtain the desired tonal properties.

Although earlier TDCI work specified methods for generating virtual exposures
from an interval of an IMEV, this work extended the sampling mechanisms used in
the rendering to support arbitrary functions over time and space, which need not
be physically realizable by a camera mechanism. Features enabled by functional
specification of exposure enable not only behaviors analogous to those achievable
with post-processing of one or more conventional exposures but features which are
not possible with a conventional system.

On the conventional end, functions describing arbitrary shutter speeds with arbi-
trary start-times and gains within the interval captured by an IMEV allow the user
to tune in the desired instant and exposure of an image. Specifying multiple such ex-
posures for the whole scene creates images much like those produced by conventional
multiple exposures or various sorts of merging of independent exposures. Specifying
different exposure functions for different spatial areas of the scene allows a super-set of
conventional bracket-and-stack processes. Where conventionally the constituent im-
ages are restricted to composing a fixed set of non-temporally-overlapping exposures
captured in series at the time of capture spatially varying functions give localized
choice of effective instant, shutter speed, and film speed for arbitrary portions of the
scene over potentially overlapping time intervals, and allow the choices of both area
and exposure to be set and re-set an indefinite number of times after the fact.

Other features — like negative weights (which remove the contributions of incident
light during some interval) and time-varying gain (changing the virtual film speed
during the interval the virtual shutter is open) — are flexible in ways not closely
analogous to photochemical photographic processes, and in ways not even achievable
with frame-oriented photo editing software.

Certain benefits are also conveyed by the process of encoding an IMEV; being
able to recognize that individual sites appear constant for multiple samples allows
for value refinement within a PDF, subsuming many of the de-noising features often
applied to frames.

Finally, this work has demonstrated the feasibility of post-capture time-
and space- varying gain manipulation. Two generations of prototypes imple-
menting the above ideas, discussed in section 3.10 and section 3.13 have validated
that it is possible to build an imaging pipeline based on the principles described
above, and having done so, that the promised features work as described. A number
of sample images rendered from the latter prototype, and the exposure specifications
used to generate them, are provided in subsection 3.13 to illustrate both the method’s
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suitability as an elegant implementation of many existing photographic practices and
several new techniques.

During this work, a number of changes to the terminology around TDCI have
emerged. Previous work did not employ the Image Evolution Model (IMEV) term,
using a variety of phrases like “TDCI stream”, “scene model”, “scene appearance
model”, “model of scene evolution”, etc. Because much of the work presented here
focused on making more sophisticated use of IMEVs, a more descriptive, more com-
pact, and more consistent term was needed, and IMEV was selected as the most
appropriate.

Earlier work on TDCI, as in many discussions of camera systems, has referred
to the process of converting incident light into an image has been referred to as
“integration.” This terminology is pleasing for a number of ways; it suggests the
mathematical term integration — as in area under a curve — which roughly describes
the way in which gathered incident light over a period of time, as determined by
the shutter, is converted into an image, modulated by a gain function (colloquially,
film speed). Much of the current work documented here has taken the approach of
viewing TDCI as a variation on a derivative sensing system; that is, a sensor system
that records the derivative of the phenomena being sampled rather than directly
capturing the values.

A number of imaging devices which could be described as “derivative cameras”
have already emerged, such as event cameras, which are discussed further in sub-
section 2.1. Specifically, the TDCI sensors which have been proposed or simulated
approximately record the second derivative of the incident light — each record is an
update to the rate of change of the incident light at a particular sensel. Because of
the pixel error model central to TDCI, strictly each quantized pixel is value repre-
sents a non-uniform quantization of a random process — reasonably approximated
by a Poisson process as is frequently used to model photon shot noise [37] — and is
therefore more closely the second derivative of a continuous random variable. This
choice of terminology and framing was not used in earlier work, but has proven useful
useful in thinking about the action of various camera-system components.

Copyright© Paul Selegue Eberhart, 2024.
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Chapter 2 Background

Because this work is largely an exploration into the question “What if we stop treat-
ing digital cameras like film cameras?” it is important to establish a baseline model
of camera behavior and terminology. The premise of this work is that a number
desirable properties achievable in a digital camera system are obscured or obstructed
by assumptions carried over from film cameras and affordances for feeble computers
in the early years of digital imaging. Such a situation is not surprising; permanent
photographic processes emerged from several sources in the 1830s, and the first prim-
itive digital image sensors only appear in 1969 [38]. This hundred and forty year
interim provided ample time and market penetration for techniques, terminology,
and practices to develop and refine into a powerful cultural inertia.

A digital camera consists of a number photosensitive sensels, an interface for read-
ing out those sensels, and an attached computer system to control the readout and to
process and store the resulting data. These sensels and read-out mechanisms may be
constructed in a wide variety of ways, but the vast majority of them share a number
of properties, and many of those properties are distinct from the behavior of photo-
chemical film. First, sensels are relatively independent. While many cameras share
one analog-to-digital converter across a section of sensels, digital cameras are not
bound by the restriction that the sampling of the entire frame must be simultaneous,
as film cameras are. In fact, excluding a small but growing number of global shutter
cameras, the majority of cameras do not have precisely correlated global readout.
Furthermore, digital cameras do not require that the readout of the sensels be cor-
related; different sections of the sensor/scene may be sampled not only at different
times, but with different parameters to suit the brightness, motion, or other scene
properties.

The control mechanism also distinguishes modern cameras from their mechanical,
photochemical predecessors. A basic film camera fundamentally has three relatively
coarse controls; the sensitivity (film speed) of the installed film, selected from a set of
manufacturer options and set long before the time of capture, the shutter speed, and
the aperture of the lens. While film cameras picked up various sorts of automation,
like several varieties of automatic exposure control, over the decades, the presumption
is that those parameters are controlled by a human operator to produce approximately
the desired image “through the lens,” or automation designed to mimic what a human
operator would have done.

Finally, digital cameras do not require that the measurement of incident light and
the generation of an image from that sampled data be coupled. In a film camera, those
processes are very closely coupled; the photochemical processes in the emulsion at
the time of exposure closely bound the resulting image. Some after-the-fact control is
possible by manipulating the development process, but the resulting image is largely
restricted to relatively small changes effected by relatively blunt instruments like
dodging and burning with hand-cut masks.
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2.1 The Camera

Because much of this work is focused on new modes of operation enabled by digital
cameras, and the persistent assumptions that impede their use, it is important to
ground the behavior and terminology around camera systems. A cameras is comprised
of a photosensitive element to record incident light, an optical lens to form an image
on the photosensitive element, and a shuttering mechanism to control the exposure of
the photosensitive element to the image projected by the lens. Particular cameras can
vary widely in how these elements are constructed, and which and how parameters of
the system can be manipulated by the end user. Relevant details of the construction
of these elements are discussed in this section.

Optics of Lenses

While optical lenses themselves are an area of considerable study, for the purposes of
imaging work, a small subset of optics is useful in imaging applications, and specifi-
cally toward the proposed work. This focuses on the bulk characterization of optical
assemblies — primarily the sort sold as photographic lenses, which are somewhat
confoundingly also referred to simply as lenses.

Lenses can be characterized in a variety of ways, most straightforwardly by focal
length: the distance between the point of convergence and the sensor plane, measured
in millimeters. Longer focal lengths result in a more “zoomed in” image for the same
other parameters.

Another basic lens property is “lens speed;” the ratio of the system’s focal length
to the diameter of the entrance pupil — essentially, the amount of light admitted
by the lens. Faster lenses represent a relatively larger entrance pupil, and hence
admit more light. Lens speed is generally expressed as “f /numbers” or “f -stops,” the
reciprocal of the relative aperture. This encodes the amount of light admitted into a
geometric series of powers of the square root of two.

More formally, optical systems can be characterized by a set of mathematical
functions. The image of a point-source passed through an optical system forms the
PSF (Point Spread Function), essentially the impulse response of the lens. The PSF
for a system, or at least a good approximation thereof, is easily obtained by simply
imaging an approximate point source with the system in question. Mechanically, an
image is the sum of all non-occluded portions of the point spread function, for all
points of light in the scene. More easily applicable to imaging is the OTF (Optical
Transfer Function), which represents the response of the optical system to sine-wave
input; formally, this is the Fourier Transform of the PSF. The OTF is a complex-
valued function, but for imaging applications the more convenient real-valued MTF
(Modulation Transfer Function), formally the absolute value of the OTF, is used,
justified by an assumption of (approximate) radial symmetry.
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Legacy of Film

Many photographic conventions were set in the pre-digital era, and have been car-
ried into the digital age. Most of these carryover assumptions are reasonable and
contribute to the ergonomics of camera use, but many others impede or mislead
productive use of modern digital-sensor based cameras. Even years after the transi-
tion to more flexible digital sensors, cameras are still designed and operated under
assumptions adopted during the film era.

In a film camera, the image is captured by a timed exposure of a surface doped
with photosensitive chemicals. The details of the various chemistries used for this
purpose are dramatically out-of-scope for this work, a number of the behaviors of this
medium, and the parameters used to characterize it, have survived into the digital
age. More details of the relevant parameters are detailed below in the discussion of
the APEX system.

A number of systems existed for describing the sensitivity of photochemical emul-
sion film — early systems tended to be specific to a vendor, but eventually standards
such as the ASA scale (formally ASA Z38.2.1, later refined into ASA PH2.5 and
ANSI PH2.21 for color film) and eventually the ISO 5800 (for color negative film)
and related ISO6 and ISO2240 for black-and-white and color negative film respec-
tively. The concept of “film speed” or “ISO” in a digital context is a convenient
abstraction for gain, but is chiefly an analogy — a somewhat stretched analogy the
rather complicated mathematical details of which are established by ISO 12232 [39]
— to allow techniques developed for film exposure to apply to digital cameras.

Another assumption from the pre-computer era which continues to hold sway over
camera design is the idea that images, as captured, should be suitable for human
consumption. In digital imaging systems, this is often not the case; the consumer of
the images is likely to be a computer, which may be programmed to extract specific
information from the image, rather than a human who attempting to interpret the
capture. Even if the image is ultimately intended for a human viewer, a large degree
of computational post-processing is mandatory to convert the digitized, color-mosaic
image data into an image a human can view, and the collection of parameters and
defects which can readily be manipulated in this rendering process are different and
much broader than what could be readily manipulated in a chemical exposure process.
This leads to unfortunate choices in optical systems; for example, when designing a
system intended to capture text for character recognition, designers may choose a well-
corrected lens which makes compromises in terms of sharpness in order to produce
a more-pleasing image, while the OCR system would be better served by extremely
sharp images with situationally harmless but visually displeasing color fringing.

Without this presumption, it starts to become possible to build different kinds of
camera, which are better suited for capturing information about a scene, rather than
pleasing images. Pleasing images can then be synthesized after the fact to create the
desired image or images, with the ability to manipulate exposure parameters in ways
that are traditionally set at time of exposure, or not manipulable at all. Sensors could
be placed behind lenses designed to perform specific functions (computations) rather
than capturing a perceptual model of the scene. For example, a lens could be designed
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to project regions of a scene down to a small number of points aligned with the
sensels of a very low-resolution sensor. Each sensel can then be read out for changes,
resulting in segmented motion detection in the scene without any computational
image processing, or even, strictly speaking, imaging.

The most pernicious of these assumptions is that a capture must be a single,
uniform integration of the received light across the whole sensor area during a uniform
interval. None of the above is true of digital sensors; it is possible and often desirable
to expose different sections of a sensor for different intervals, compose an image from
multiple samples, integrate after the fact, integrate over different intervals for different
parts of the frame, or even weight integration with one or more functions in time over
the scene. Occasionally, these assumptions are conditionally violated; HDR (High
Dynamic Range) images often use different integration intervals for different parts
of the scene, though typically this is performed by taking a sequence of images with
different exposure settings and selectively composing them after the fact, rather than
by controlling or sampling the sensor in a non-uniform way.

Photographers will sometimes also deviate from simple single-exposure captures of
relatively-static images for artistic and/or documentary purposes. Multiple-exposure
images were used in early scientific chronophotography to capture motion in a single
scene, such as a series of overlaid exposures capturing intervals of an animal’s gait.
In modern times, a similar effect is sometimes created by after-the-fact layered mul-
tiplication of several separate exposures rather than by repeatedly exposing the same
photosensitive surface, such that the image remains normally exposed, but changed
portions of the image are overlaid, creating a time-lapse effect, and/or allowing the
same subject to appear multiple times in the same image. The other common use of
multiple-exposure images is for artistic effect; multiple exposures can create translu-
cent portions of images, mask of portions of one exposure by saturating them with
another, or other more complicated composition performed by controlling the scenes
and photographic parameters at the time of exposure. Typically, these long or multi-
ple exposure images imposed on a single photosensitive surface are not fully separable
after the fact like a series of independently exposed frames or TDCI capture would
be, as information is lost by saturation or occlusion.

APEX

The APEX system (Additive system of Photographic EXposure), designed in 1960
for use with monochrome film and encoded in ASA PH2.5-1960 [40] is still, with
minor modifications, the dominant method for discussing exposure parameters. The
APEX system is based on the equation

A2

T
=

BSx

K

where

• A is the f-number, the reciprocal of the relative aperture.

• T is the exposure time, the ’shutter speed’, in seconds.

22



• B is the average scene luminance, the ’brightness’, in foot-lamberts.

• Sx is the photographic sensitivity of the medium, the ’film speed’, in the ISO
system.

• K is the light-meter calibration constant, in cd/m2

The full equation is rather complicated for manual field use, both due to arith-
metic intensity and behavior which will provide several equivalent sets of parameters
any of which which may or may not be achievable with any particular camera sys-
tem. Because of this impractical complexity, some set of simplifications are typically
applied in practical applications. One option is to use a mechanical or electronic
calculator capable of producing suitable settings with some parameters fixed, as with
a particular lens or film speed.

To simplify the arithmetic and range of choices, it is common to collapse the
various parameters into a single exposure value (Ev) equivalent to the log2 of either
side of the equation,

Ev = log2
A2

T
= log2

BSx

K

Another simplification, known as the “additive” or “logarithmic” system not only
takes the log2 of either side, but separates the fractions such that the whole calculation
can be performed with addition:

Ev = Av + Tv = Bv + Sv

where

• Ev is the exposure value, as above.

• Av is the aperture value; Av = log2(A
2)

• Tv is the time value; Tv = log2(
1
T
)

• Bv is the speed (or sensitivity) value; Av = log2(NSx)

• Sv is the brightness (or luminance) value; Bv = log2(
B

NK
)

– N is a constant which converts between ASA arithmetic film speed (Sx)
and speed value (Sv), 2−7/4 (approximately 0.30)

– K is the reflected-light meter calibration constant

Photographic systems with computer control, especially digital cameras, the com-
putation is often further simplified into the APEX96 system, which multiplies stan-
dard APEX values by 96 to allow exposure calculations to be easily and accurately
performed using only integer math.

The Exif [41] system which is used to include metadata in image files uses the
APEX values to encode exposure parameters, albeit with occasional marketing-related
inaccuracies in certain values, or strange selections of the K and N constants by some
versions of the standard and/or manufacturers.
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Sensors

Modern cameras almost exclusively capture with analog sensors whose values are
digitized. These sensors are comprised of an array of photosensitive cells (sensels)
which convert incoming photons into electrical charge, and ADCs (Analog to Digital
Converters) which convert the charges imparted to the sensels into digital values.
These basic parts are typically accompanied by a variety of filters and other support
elements, forming a sensor stack.

On the sensor, each sensel accumulates charge from photon interactions, which
ideally accurately samples a scene. A number of effects can interfere with sampling
accuracy, particularly in extreme lighting conditions. If the number of photons strik-
ing a sensel is extremely high, a sensel may saturate, reaching the maximum amount
of charge it can store, thus clipping signal, or even leak charge into adjacent sensels
[42]. If the number of photons striking a sensel is extremely low, the sampling can be
overwhelmed with noise from the sensor, such as inaccuracies in the charge handling
or ADC, or simply photon shot noise, the natural statistical variation in emission
rate. The existence of photon shot noise requires that many photons be captured to
accurately sample the scene, as the variation may otherwise distort the signal.

There are two major ways in which sensors are constructed; CCD (Charge Coupled
Devices) sensors, and CMOS (Complimentary Metal Oxide Semi Conductor) de-
vices. CMOS sensors are often referred to as “active pixel” sensors by contrast to
CCD’s “passive pixel” mechanisms, though it is possible to build passive-pixel sensors
consisting of only a photodiode and selection logic from CMOS technology.

The basic action of a CCD was designed at Bell Labs in the late 1960s, initially
for use as a digital memory device [43], but by 1970 had been adapted for imaging
applications there, primarily by the work of Michael Francis Tompsett [44].

A CCD sensor is comprised of one or more rows of PN junctions; silicon structures
of p or p++ doped silicon, covered by thin layer of n-doped silicon, separated into
individual regions. Each of these regions is exposed to light, and acts as a capacitor
or charge-well, converting arriving photons into charge via the photoelectric effect.
Between each pair of wells sits an electrode contact, separated from the doped layers
by an insulating layer of SiO2. In order to read the charges collected in each well, the
electrodes can be energized in sequence, creating potential wells into which electrons
from the un-energized neighboring region will flow, in effect allowing the sensor to be
used as an analog shift register. The output of the shift register can then be sampled
by a relatively large and sophisticated readout mechanism, in digital sensors this will
be an ADC (Analog to Digital Converter) possibly in combination with an amplifier.

Many commercial CCDs use a more sophisticated architectures in order to better
suit imaging applications. Some CCD sensors are designed with one set of exposed PN
junctions to accumulate charge, and a second set of junctions blocked from receiving
light, into which the entire set of sampled charges can be shifted in a single operation.
These may be constructed in several ways, such as with a contiguous sensing area and
storage area of equal size, or with alternating rows of imaging and storage elements.
This latter interline approach allows for faster readouts with fewer transfers but
reduces the fill factor to around 50%, making such sensors prone to spatial artifacts
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or requiring the introduction of microlenses and/or an anti-aliasing filter to redirect
the light striking the surface uniformly into the sensitive regions.

CCDs with separate sensing and storage elements offer an advantage in that they
can be used without a mechanical shutter, and potentially at very high framerate;
the sensor is grounded out, setting the sensor to the dark state, then the exposed
junctions are allowed to accumulate charge for an interval. The control electrodes
can then be energized to simultaneously shift the entire set of captured charges into
the covered row, ending integration.

CCDs have a number of interesting design properties; CCDs are well-suited to ul-
tra high sensitivity applications, as they posses an inherently high quantum efficiency,
and the sensels can further be readily modified with features like photo-multipliers in
front of the sensing wells, or electron multipliers (essentially avalanche diodes) in the
readout path, allowing the reading of charges as small as a single photon. However,
CCDs are susceptible ‘spillover” effects such as blooming or smearing; if some charge
wells become saturated, the electrons will shift into neighboring wells, contaminat-
ing the sample. Blooming occurs when the charge escapes to neighboring cells in
a direction-independent way, while smearing occurs when the excess charge escapes
down the lower-resistance shift path, creating bright line artifacts. The act of intro-
ducing the control charges heats the sensor, increasing dark current and hence noise.
Thus, CCDs must either be operated with a duty-cycle that allows for cooling inter-
vals, or, for greater complexity and expense but improved performance, be actively
cooled.

In contrast to the charge wells employed in CCD sensors, each sensel of an active-
pixel CMOS sensor is comprised of a photodiode and some number of control tran-
sistors to perform functions such as resetting the charge across the junction, and
dumping the charge onto a readout bus. To use the photodiode as a sensor, it is first
reverse biased to a known potential using a reset transistor, then exposed. Photons
striking the photodiode during exposure will reduce the charge on the junction, which
can then be sampled to read the amount of light at that location.

Many CMOS sensors are more sophisticated, with the addition of specialized
structures such as a pinned photodiode which provides separate sensing and readout
junctions, with the charge moved between them via a bias applied by an additional
transfer transistor. In addition to providing better isolation, pinned photodiode sen-
sors also have improved noise properties because of their correlated double sampling;
readings are taken as the difference between the freshly-reset readout diode, and the
charge on the readout diode after transferring the sense diode’s charge onto it, giving
a continuously self-referenced calibration. A common way of classifying CMOS sen-
sors is by the number of transistors per sensel; 3T, 4T and 5T sensors are common,
with increasing sophistication, usually leading to a lower fill-factor but better noise
properties.

There are two partially-independent size factors in sensors; the overall dimension
of the entire light-sensitive area, and the area of each sensel in the area. A small
sensor with large sensels will necessarily offer low resolution, but otherwise the two
factors are relatively independent, and induce different effects on the properties of
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Figure 2.1: Common Sensor Sizes ©Moxfyre/Wikimedia Commons/CC-BY-SA-3.0

the captured image. Larger sensors are obviously physically larger, but also require
larger optics to project an image which covers the sensor.

Sensor size is often measured in terms of “crop factor” relative to a “Full Frame”
35mm light-sensitive area of 36mm x 24mm. This convention allows for easier com-
parison of photographic properties; the effective behavior of a full frame lens attached
to a crop sensor body will be multiplied by the crop factor. For example, the common
APS-C sensor size of 25.1mm x 16.7mm is said to have a 1.5x crop factor, meaning
a 100mm focal length lens for a 35mm camera were attached to a APS-C body, the
lens would behave like a 100mm/1.5 = 66.67mm lens with the same aperture size.
Many cameras and lens systems are marked in 35mm equivalent fields of view (pre-
multiplied by the crop factor) rather than actual parameters, which can lead to in
comparisons.

Larger sensors will, given the same optics and other parameters, offer a shallower
depth of field. This shallower depth of field may be desirable, as in portraits or other
tasks with sharply delineated foreground and background, or undesirable, as when
capturing landscapes or for gathering the maximum amount of information about the
scene.

The measure of resolution itself is more complicated than it first seems. Resolution
is, in essence, a measure of the amount of detail in an image. However, resolution can
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be measured along a number of dimensions (pixel resolution, spatial resolution, tem-
poral resolution, spectral resolution, etc.), and the methods for measuring resolutions
along those various axes may produce wildly different results.

The most obvious measure of resolution for digital imaging systems is pixel res-
olution; the total number of individually distinguishable light-sensitive dots on a
sensor, usually expressed as “pixels.” Pixel resolutions are typically expressed either
in resolution along the X and Y axis (eg. 640x480, 1920x1080), which also encodes
information about aspect-ratio, or simply in terms of the total count, usually ex-
pressed as megapixels (MP). While manufacturers often market a camera based on
the number of megapixels of the sensor, this metric is easily manipulated, ignores
optical effects,and generally does not provide a faithful representation of the qualities
of the image produced.

Some of the sensitive area of most sensors is not used for image capture; some
pixels around the edge are typically kept dark to provide a black reference, some pixels
may be excluded from the processed image due to transformations to correct for lens
distortion, and some fraction of pixels will typically be “dead” and not contribute
to the gathered data. Furthermore, the stack of filter elements between the lens
and sensels (discussed below) will cause some pixels to be ganged together, as with
anti-aliasing filters that spread a point of light out across several pixels, or in a color
imaging application, the color filters themselves which isolate subsets of pixels to
specific narrow frequency bands (colors). In video applications, pixel resolution can
be misleading because it is possible not all pixels will be updated in each interval. For
example, some encoding schemes interlace, updating alternating rows of the image
on alternating frames. Pixel resolution can also be deceiving because it is possible
to arbitrarily scale digital images with a variety of scaling algorithms which do not
add any additional information about the scene (and may create artifacts), but do
increase the apparent pixel resolution.

A different method for measuring spatial resolution uses properties of the captured
images rather than a characterization of the capture device. For this measure, one
determines the smallest features which can be distinguished in a controlled image.
The most typical of these measures is line pairs per millimeter (lp/mm); a measure of
how many alternating black and white lines can be distinguished at the sensor/film
plane. Lp/mm is a very suitable measure for characterizing lenses in isolation, as the
test can be performed by simply arranging sample cards with different-density lines
and observing the projected image. Unfortunately, lp/mm becomes somewhat am-
biguous when used to characterize whole imaging systems, especially digital systems,
as the size of the reproduced image will likely be altered from the (possibly unknown)
size of the photosensitive element during development in film systems, and will al-
ways be altered and resized during reproduction by the display device in the case of
digital imaging, making the concept of “per unit length” suspect. Measures of lp/mm
in digital systems is further complicated by processing steps in the digital imaging
pipeline, which may artificially sharpen or soften the image, experience aliasing at
certain spatial frequencies, or otherwise throw the measure. For digital imaging sys-
tems, a measure of pixels per inch (ppi) is perhaps the most faithful representation
of the informational density of an image. The ppi measure is, in essence, the number
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Figure 2.2: The relationship between shutter angle and exposure time.

of independent pixel values per unit length. ppi thus encodes the limiting factor on
the spatial resolution across the optical elements, sampling device, and processing
pipeline.

Other measures of resolution work along other dimensions. Temporal resolution
measures the precision of image measurement with respect to time, corresponding
roughly with sample rate in other sensing applications. The most common measure
of temporal resolution for video capture is Frames per Second (FPS), roughly the
number of full-scene updates per second. FPS does not always accurately represent
the temporal resolution with which particular details in a scene can be determined.
For example, just as for spatial resolution above, some video encodings may not
update the whole frame simultaneously. Temporal resolution is also confounded by
exposure times. In the common case for a single capture device, frame rate and ex-
posure time are interrelated — the maximum exposure time is the reciprocal of the
frame rate, and exposure times shorter than that imply periods in which no infor-
mation is collected. This relation is described as shutter angle. A shutter angle of
360◦says that the shutter is open for the entire inter-frame interval, while a 180◦shut-
ter angle has the shutter open only for the first half of each interval. Setting shutter
angle appropriately is a matter of both the imaging devices’ sensitivity to light, and
the desired effect. An illustration of shutter angle is shown in figure 2.2.

Some higher-temporal-frequency features may be extracted with lower reliability
by analyzing features within a single exposure, most directly through techniques like
measuring the spatial dimensions of a motion-blur and dividing by the exposure time.
Also like spatial resolution, temporal re-sampling is possible, and unless special efforts
are made, can result not only in no additional information, but distracting artifacts.
TDCI complicates this measure as the temporal resolution of a TDCI Stream is
likely (and preferred) to be non-uniform across the frame, thus defeating many of
the uniformity-assuming techniques, and necessitating statistical and/or temporally-
integrated measures, which will complicate direct comparisons.
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Figure 2.3: A typical sensor stack

The Sensor Stack

Typical imaging sensors are not just the exposed array of sensels, rather, a collec-
tion of protective layers, filters, and optical elements are superimposed on the sensor,
forming a sensor stack. This stack converts the array of photon detectors into an
imaging device, and the design decisions in the construction of the sensor stack sub-
stantially affect the properties of the data captured by the sensor. Common sensor
stack elements in addition to the sensor itself include a protective layer, various block-
ing filters, a color filter array, a microlens array, and an antialising filter. The specific
function of these elements are described in detail in figure 2.3.

The front-most element of most sensor stacks is simply a layer of “clear” glass
which acts to protect the other elements of the stack from physical damage. This
layer is typically 1-4mm in thickness [45] for commercial cameras.

Another critical layer in the sensor stack are band-pass filters which block or at-
tenuate certain frequency bands of light from reaching the sensels. Infared blocking
filters are included in most visible-light cameras to compensate for the natural sen-
sitivity peak of the Silicon they are constructed from in the near infrared (around
750nm) [46] band. This biases the sensor toward human visible portions of the spec-
trum, which is desirable in sensors capturing image for human viewing. Sensors in
applications other than capturing scenes such that the images match human percep-
tion, such as astrophotography, low-light imaging (“nightvision”), or in use in FTIR
(Frustrated Total Internal Reflection) touch surfaces often omit this filter, as the
infrared sensitivity is desirable in these applications. Other bands may be excluded
according to application, either in the sensor stack or, more often, using removable el-
ements mounted to the lens assembly. For example, UV blocking filters may be added
when photographing in bright sunlight to lessen the appearance of fringing due to Ul-
traviolet light refracting spatially away from the well-corrected visible bands. Clever
applications of a variety of band-pass filters in conjunction with image processing
techniques are important to Multispectral Imaging.

For color imaging, a color filter array is superimposed over the sensor to allow for
separation of color data, and hence capture of color images. Each individual sensel in
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Figure 2.4: Bayer-type CFA pattern

conventional sensors is only an photon collector; it cannot distinguish colors without
external filtering. In most camera sensors, a Bayer filter [47, p. 3.2.2] is superim-
posed over the sensor, consisting of alternating stripes of green/red and green/blue
alternating color filters. This pattern is chosen largely on human physiology grounds;
human eyes are most sensitive to green light, peaking somewhere around 550nm [48],
so favoring green in the color filter array maximizes the capture of detail. A typical
Bayer pattern is shown in figure 2.4. Other patterns may be chosen to optimize par-
ticular spectral properties; some cameras use various RGBW arrangements in which
a standard Bayer pattern has some unfiltered senesels interspersed to increase the
total amount of light admitted and hence improve overall sensitivity. Similarly, some
sensors have been designed with CYYM or CYGM filter arrays filtering for secondary
colors in order to, again, increase the total admitted light. Other cameras may have
additional filter channels to alter the In many applications, the green channel of a
Bayer-filtered sensor is an adequately close approximation of the luminance to be used
directly as an approximation. Several well-known image processing tools weight Red
0.3, Green 0.59, and Blue 0.11 by default when performing conversion to grayscale
[49].

Various demosaicing techniques are used to convert the interlaced color informa-
tion into a full-color image. These techniques will necessarily cause some aliasing,
blurring, or other delocalization of color data and/or a dramatic reduction in image
resolution. An example extremely simple demosaicing algorithm would simply assign
the value from the nearest neighbor sampling a particular channel to that channel in
each pixel, which is straightforward to implement but tends to “smear” colors, par-
ticularly where there are sharp gradients between regions. Another simple example
method would generate single colored pixel from each 2x2 block of sensels, deriving
the red channel from the red-filtered sensel, the blue from the blue-filtered sensel,
and the green from the two green-filtered sensels. This method is also conceptually
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straightforward, but rarely used because it cuts the image resolution by a factor of
four, and is still prone to color corruption. In most applications, more sophisticated
demosaicing algorithms are applied, with a minimum ante of bilinear interpolation,
and a tendency toward more scene-aware techniques using pixel correlation or group-
ing to minimize color smearing.

Demosaicing is known to be a dual-problem with super-resolution [30], a term
covering any technique that improves the effective resolution of an already-captured
image via post-processing. Early promising experiments for temporal super-resolution
[5] with TDCI streams are likely to also yield effective temporal demosaicing tech-
niques.

Most image sensors include an antialising filter somewhere in the filter stack. This
filter, which is sometimes described as an optical low-pass filter, acts to spread each
point of light out over a region of the sensor, allowing for more accurate sampling.
The primary need for an antialising filter in a camera sensor stack is to prevent moiré
patterns; high-frequency repeating patterns in an scene beating with the placement
and spacing of sensels in the sensor layer. This spread also helps to compensate for
the fill factor of the sensor in another way; by spreading each point of light, features
go undetected by “sliping into” the non-photosenstive regions of the sensor. There is
a significant tradeoff in the degree of the antialising filter; a too-aggressive AA filter
will limit the spatial resolution, visibly blurring the captured image, while a too weak
AA filter will still allow certain scene content to produce aliasing artifacts. An ideal
antialising filter will eliminate all spatial frequencies above the Nyquist frequency of
the imaging system, while faithfully passing all below-Nyquist features. Antialising
filters are typically implemented with several layers of birefringent material [50] in-
serted into the sensor stack. Birefringent materials have a refractive index which
is dependent on the direction and polarization of light, splitting the beam into two
spatially separated components. Careful selection and arrangement of several bire-
fringent layers produces a filter which splits an incident beam into a desired number of
components; typically four to cover a cell of a color filter array; and whose dispersion
distance matches the Nyquist frequency of the underlying sensor. In most practical
sensors, the antialising filter is implemented in several layers of Quartz or Lithium
Niobate [50].

The depth of the optical path in the sensor stack creates a variety of surprising
artifacts. These artifacts may compromise image quality in a variety of ways. The
physical thickness of the sensor stack begins to have effects even before the light
reaches the device. In an increasingly common case, cameras employing an electronic
first curtain shutter suffer from gradients in the exposure, as the electronic first
curtain is in the film plane, and thus not subject to angular selectivity, while the
mechanical second curtain is in front of the film plane, by at least the thickness of
the sensor stack and a safety margin, and thus selectively admits off-angle rays. This
(and several related) phenomena were documented in a paper I co-authored [4].

Deeper in the sensor stack, in order to compensate for the fill-factor of the sensor
and the depth of features above and through the light-sensitive area, the microlens
array will attempt to focus light into light-sensitive areas, but irregularities and light
leaks in system, as well as intentional cross-contamination from the antialising filter,
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creates contamination and dependency between neighboring sensels. These artifacts
may bypass the color filter array, if present, further complicating the contamination.
Even lower in the stack, physical structures in the manufacturing of sensels may
interfere with neighbors; for example, the partially occluded sensels used for phase-
detect auto-focus [51] in many sensors have a metal layer on top of the sensitive area
to accomplish the occlusion. In addition to receiving less light than regular sensels,
requiring the data from these cells be processed differently or discarded and inter-
polated over, this metal layer can shade or reflect additional light into neighboring
sensels, creating line artifacts.

ADCs

Once incident light has been converted to an electrical charge, those charges must
be read out as quantized values. This conversion is done in one or more Analog to
Digital Converters. Typically, the ADC component in a imaging sensor will include
some amplification or other prepossessing, but these can safely be regarded as part of
the conversion process. There are a number of design decisions around the ADCs in
a sensor, setting aside implementation details of the ADC itself, which is out-of-scope
for this work but well covered elsewhere [52].

Different sensor designs will include different numbers of ADCs; some sensors,
especially CCD sensors, may use a single ADC, shifting rows of (analog) charges
‘down’ sensel rows, then ‘across’ a readout row to a single converter. This method
is relatively slow, and the extended analog path can introduce noise from the charge
transfers, but the use of the same ADC device for each conversion avoids artifacts
due to differences between the ADCs, or calibration and post-processing steps to
normalize them. Others sensor designs, typically CMOS sensors, are read out with
an ADC per-row or per-column. This configuration allows for much faster readouts, as
the conversion process is parallelized, at the cost of considerably more ADC hardware,
and a slight loss of consistency as different ADCs may exhibit minor performance
variations.

Typical sensors are not designed with per-sensel ADCs, as a matter of cost and
complexity, though some of the exotic and/or specialized sensor technologies discussed
below may approximate independent per-sensel sampling. For example, designed-for-
TDCI sensor would not employ any conventional ADCs, but would detect charge
threshold crossings at each individual sensel.

There is another design compromise that arises a consequence of the row or
column-oriented readout in the vast majority of sensors, between rolling or global
shutters.

In global shutter mode, the entire frame is read out before any sensels are exposed
or allowed to begin integrating. In rolling shutter mode, rows/columns that have
already been read out are exposed while the readout process continues, such that
each sensel is exposed for the same amount of time, but the exposure intervals are
staggered across the frame. Rolling shutter allows for higher frame-rates, and a slight
reduction in noise due to analog effects on captured charges at rest, but at the cost
of potential distortion. The most severe (and intuitive) of these distortions is that
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fast moving objects may “smear” in an image captured with a rolling shutter, such
that objects moving along the axis of readout will appear elongated or compressed as
consecutive intervals sample the object in different positions. Many cameras can be
operated in either mode to suit situational needs, or in combination with an external
mechanical shutter as in “electronic first curtain”.

A final variation in sensor ADC design that bears mention is that sensors may
be constructed with the ADC(s) in the same chip and manufacturing process, or
with a separately-constructed ADC, coupled to the sensor at the die or package level.
Advantages of on-chip ADC designs include better noise properties, as the length and
number of junctions in the analog transmission path increases noise, and a potential
cost decrease at volume, as it lowers the numbers of components. Advantages of
off-chip ADC designs include being able to use tailored fabrication processes for each
component, and a potential cost savings because it allows the use of commodity ADC
components.

Other Sensor Technologies

Quanta image sensor

A competing design for next-generation image sensors provides interesting contrast
to the design decisions in TDCI. Eric Fossum’s QIS (Quanta Image Sensor) design
[53] operates on a basis of photon counting; each QIS sensel (termed “jot” in their
writings) is a detector for a single photon over an interval. Each jot in a QIS sensor
array is sampled on the order of 1000FPS, and provides a single bit of output at each
sample, 1 for a photon interaction, or 0 for none, which are then collated into a bit
field, representing a frame. A series of bit fields are collected into a three dimensional
bit field in (x,y,t), x and y being the spatial grid of the sensor layout, and t being
the time series of samples. Images are synthesized post-capture by sampling into
the data, in a process not entirely dissimilar to TDCI. QIS sampling is envisioned as
combining along all three axes; pixels are synthesized by combining an (x,y) region
of jots summed over an interval. The dimensions of the region and interval can
be controlled dynamically, giving desirable options for compression and extended
dynamic range which are impractical with conventional sensors, advantages which
are shared with TDCI-based imaging.

QIS jots must be much smaller and more closely spaced than the diffraction limit
of the optical system in front of the sensor, which poses challenges in both fabrication
technology and energy density for practical sensors, as compact energy efficient single
photon detectors are not yet practically realizable.

QIS differs from TDCI in several key ways. Most importantly, QIS is still frame-
based — each QIS sample is an (approximately) simultaneous sample across the whole
surface of the sensor while TDCI imaging operates on a series of waveforms updated
only when the rate of change for a particular sensel changes. A QIS sensor must,
therefore, be able to sustain the data rate of updating the entire sensor capture at
the sampling rate. This produces an obvious saturation risk; if the (probable) arrival
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and detection rate of photons is high relative to the sampling rate, the sensor will
saturate, capturing no meaningful scene information.

QIS is also based in a different set of assumptions — where TDCI is based on
the premise that image data is a model of a consistent physical scene, sampled by
observing light reflected or emitted from it, QIS imaging assumes the arriving light
is the model of interest.

Combining the two ideas above from a different perspective, TDCI is based on
photon arrival rate, while QIS is (at least in principle) in photon arrival count. To
give an (intentionally oversimplified) example, if a sensel is struck by a single photon
between t = 0 and t = 1, no photons between t = 1 and t = 2, and two photons
between t = 2 and t = 3, an arrival-rate sensor will regard the value during the
interval from t = 1 to t = 2 as 2/3. In a count-oriented sensor, the illumination of
the point in question during interval t = 2 will be considered 0, giving no information
about the scene.

Photocell arrays

A possible implementation of a sensor suitable for TDCI, which is sadly outside the
scope of the current work, could be constructed from an array of easily fabricated
photocells or photo-diodes, with each diode paired with a small computational ele-
ment. These computing elements could be extremely simple, essentially only needing
a few hundreds of transistors per sensel, as proposed in work on Nanocontrollers in
the early 2000s [54].

Event Cameras

Event cameras are another recent sensing technology which bears significant similarity
to TDCI designs. Like TDCI, event cameras are based on recording only a stream
of records for changes in the scene. Unlike TDCI, event cameras’ change records are
typically only a time, location, and polarity, while TDCI records additionally include
a new value — including an initial baseline sample. This lack of a magnitude update
(or recorded absolute magnitude) in the update record has several consequences.

First and most problematic is that means an event camera will produce no infor-
mation about static parts of the scene, so no amount of processing will be able to fill
in scene features that do not move during the sampling interval without additional
out-of-band sensors. Some experimental event cameras have contained a second set of
sensels, a second sensor, dual-mode sensels, or other out-of-band system to establish
ground truth [55], but this will typically result in problems in the optical path, such
as a low fill-factor because the sensels are larger or interspersed, or a complicated
optically-degrading beam splitting solution to create two images. More problemati-
cally, correlating and integrating the event stream and frame-based capture data is
computationally difficult, and, based on recent surveys [55] not even fully solved in
general.
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Secondly, polarity-only change records (rather obviously) restrict the information
in an event; all an update can tell is that that site has changed by more than a
threshold.

The particular thresholding configuration may use a fixed threshold level for the
sensor, a configurable (by user dictate or feedback) level for the whole sensor, some
manner of automatic feedback in individual sensels, or some combination thereof.

Finally, in a problem shared with TDCI systems, event cameras may suffer from
saturation. If a large number of changes happen at the same time, event data will
be offset or lost as the amount of data being read exceeds the throughput at which
records can be stored. This situation would typically be caused by some sort of
correlated change in the scene, trivial examples including things like camera motion
or sudden lighting changes. This risk of saturation due to correlated events can be
mitigated with techniques such as flicker filters (to eliminate predictable, periodic
lighting changes, such as power-line-frequency sinusoids), or more sophisticated scene
modeling to describe changes correlated due to camera motion or similar systematic
behavior in a higher-level representation.

Philosophically, TDCI and event cameras are rather different approaches — TDCI
is largely inspired by designing to suit the readily realizable apparatus of cameras
and computers, while event cameras are Neuromorphic in inspiration, and tilt their
designs toward similarity to biological vision. This does, interestingly, mean that
some research directions explored for event cameras and regarded as “less favorable”
for neuromorphic work provide interesting information for TDCI work, like some
event cameras designed to provide PPM or PWM magnitude representations in [56].

The current primary player in event cameras is inivAtion AG, formed by re-
searchers at ETH Zurich and the University of Zurich who piloted many of the
technologies. InivAtion’s DVS (“Dynamic Vision Sensor”) products represent the
commercial state of the art for event camera systems, and provide a good baseline for
comparison. In particular, their state-of-the-art commercial product, the DAVIS346
produces a 346x260 grayscale event record, saturates at approximately 12M events
per second, and costs 6600CHF (approx $6687 US at time of writing).

Light Field Cameras

Another family of cameras which allow for a significant degree of manipulation of
photographic parameters after the fact are light field (or plenoptic) cameras [57].
Unlike conventional cameras, light field cameras attempt to measure not just the
magnitude (intensity) and perhaps wavelength (color) of recorded incident light, but
a vector quantity also encoding the direction of the incident light. This is desirable
because it allows for the depth of scene features to be reconstructed after the fact
either to generate 3D images, or to allow optical or computational adjustment of
the focus and depth of focus within a range determined by the optical system in
conventional images rendered from the recording.

Broadly, Light Field photography is accomplished by imposing a 2D array of
micro-lenses somewhere in the optical stack of a camera — typically between the
main lens and photosensitive element — to project an array of micro-images. The
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“Integral photography” name derives from the fact that that conventional images are
rendered from the gathered light field by summing - in modern systems computation-
ally, though early experiments used lens arrays to do so optically - the contribution
from the same relative position in the set of micro-images to render a final image.

There are significant disadvantages to light field cameras, the largest being that
the resolution of output images is roughly — and with differences between implemen-
tations — bounded by the number of micro-lenses in the capture device. There is
also a substantial computational requirement to render output images, a user inter-
face problem in designing tools by which an operator can set the range of focus, and
the final focus and depth of field of the output image. Also like the work proposed
in this dissertation, this is a set of problems which is considerably outside conven-
tional image processing software tools and conventional photographic practices and
intuition, which creates a substantial barrier to entry for making a consumer-facing
device.

Light field imaging has considerable historical pedigree, going as far back as 1908
when the concept was proposed by Gabriel Lippmann — best known for his work on
color photography based on interference which earned him the the 1908 Nobel Prize in
Physics — under the name “Integral photography” in the same year. Lippmann’s pro-
posal predated the technology to fabricate micro lens arrays (also sometimes termed
“lenticular screens”) for several decades, though early implementations began to ap-
pear by the 1920s. Once the technology to to mechanically construct large, extremely
well matched, and very precisely offset lens arrays to render images from the gath-
ered light field is available, it is possible to impose a matching set of lens arrays in
a camera and on a print to produce novelty lenticular prints which appear 3D as
the viewer’s perspective through the lens array shifts. Later, digital cameras and
computer technology allowed the rendering process to be computational rather than
optical. Critically, in 1992, Adelson and Wang described a mechanically and compu-
tationally tractable design for a light field camera from which depth information can
be automatically derived by computationally analyzing the correspondence between
the micro images[58]. Reversing the depth estimation process — that is altering the
stride by which an output image is summed from the micro images — allows for the
focus and depth of field of the output to be altered after exposure, in much the same
way the work in this dissertation proposes to do for time and gain.

The most visible modern commercial implementation of light-field imaging tech-
nology was from Lytro, a company founded in 2006 by Yi-Ren Ng to commercialize
light-field camera work from his PhD work at Stanford [59]. Lytro operated until
2018, and produced two models of consumer light field camera [60] as well as the
software to manipulate their captures during that time. A decade and $140 Million
of investor money later [61], Lytro produced the Illum, a $1,500 one-trick-pony tech
demo where both the device and rendering software were brittle, buggy, and slow,
and the target audience of trained photographers who might buy such a device were
frustrated by the required changes in practice for composition and processing and
underwhelmed by the quality of the resulting images [60]. Of note, such a large frac-
tion of the Lytro staff were hired by Google when the company shut down that there
were (later proven false) rumors of an acquisition [61] — likely but not verifiably to
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work on the computational artificial depth of field features that appeared in Android
camera software around the same time. A few scientific imaging companies, most
prominently Raytrix GmBH [62], have been offering plenoptic cameras and propri-
etary software for rendering images and 3D reconstructions from their streams for a
more limited, less photographically inclined audience before and after Lytro’s brief
presence on the market.

2.2 Camera Pipeline

A typical digital camera contains a small computer, which controls the user interface,
camera functions and parameters, storage management, and basic image processing.
This computer will govern both photographic tasks, such as auto-focus, mechanical
stabilization, and metering; and digital transformations, such as demosaicing, encod-
ing into output formats, and potentially more sophisticated transformations including
correction for dead pixels, black levels, or even lens distortion. In-body correction
for lens artifacts is most common in fixed-lens cameras, but may also be performed
by interchangeable lens cameras using data stored in a ROM in the lens. The in-
tegration of these controls into a single device also enables a variety of higher-level
features, such as automatically focusing on detected faces, automatically shooting
suitably-bracketed bursts to process into HDR images, and a wide variety of other
conveniences.

This computer is likely a System-on-Chip (SoC) design, integrating a processor,
dedicated image-processing hardware, and I/O controllers for storage and user inter-
face hardware. In the modern era the host processor is typically one or more licensed
ARM processor cores. Many camera vendors have long-term ASIC families for these
on-board computers, such as Canon’s DIGIC, Sony’s BIONZ, or Nikon’s EXPEED
lines. Most vendors also have long-running operating system families shared along
their camera line; Canon ran a system built on top of VxWorks until around 2007,
and subsequently switched to an in-house operating system known as DRYOS [63],
while Sony runs a Linux-based stack [64].

RAW Image capture

Many cameras have an option to capture sensor data with a minimum of processing.
This is a typical feature in “professional” cameras, and is often easily added to other
models via software hacks [63]. Primarily, RAW capture avoids the lossy compression
methods, such as JPEG (described elsewhere), which will remove some information
from the capture, and may cause artifacts. Secondarily, raw captures will lack many
of the processing steps normally performed in-body; typically, the image will still have
the color filter array pattern un-interpolated giving a “mosaiced” view, contain regions
of the sensor not typically included in output images such as unlit black-reference
areas, and lack any automated lens or sensor correction, etc. Skipping the automatic
execution of these steps in the camera body allows the photographer, or a later editor,
to manually control the details of the process, apply more computationally-intensive
methods, or extract information which might be lost during conventional processing.
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A major issue with RAW capture is that RAW formats are not well standardized;
because there is very little processing, most cameras have unique or near-unique out-
put, and require a suitable RAW conversion tool to access the generated files. Many
commercial image-manipulation tools have support for a wide but not exhaustive se-
lection of camera RAW formats, and Dave Coffins dcraw [65] utility aims to offer an
open-source decoder for a nearly exhaustive selection of cameras.

There are also semi-RAW formats, such as Adobe’s DNG (Digital Negative)
format, an open lossless container format which bundles a set of metadata for inter-
preting the data, based on the TIFF image format, which is itself a specialization of
the EXIF metadata standard [41], and under consideration for ISO standardization.
Few cameras directly export DNG files, though many vendor-specific RAW formats
are also based on TIFF.

Compression

Most digital cameras default output format is, in contrast to the RAW image data
described above, a compressed, post-processed, image provided with metadata in a
standardized format. The vast majority of cameras use the JPEG lossy compression
method, and subsequently export images in EXIF format [41], giving an interchange
format which bundles the compressed image data with metadata. JPEG compression
is based on a number of human-perception optimizations, whose broad strokes are
interesting as examples, but whose exact algorithmic details, choice of constants and
methods in the color mapping step, basis functions, etc., are specified by a number
of mutually-incompatible standards, and not particularly relevant to the project at
hand.

JPEG compression is performed in a gamma-adjusted YCbCr color space, which
represents colors as luminance (Y) and Cb and Cr color components, which are the
blue and red differences from the luma. This expression is useful for compression as
it easily allows the prioritization of luminance (discarding of color) data, more or less
corresponding to human perceptual sensitivity. JPEG compression also splits each
resulting data component into 8 × 8 blocks, which are converted into a frequency-
domain representation via a discrete cosine transform, which essentially transforms
the block into a linear combination of 64 basis functions (patterns). This represen-
tation can then be quantized, by dividing each coefficient by a constant (typically a
different constant for each component) then rounded, which, since we are operating
in the frequency domain, essentially removes the high-frequency components to which
humans are least sensitive. This quantization step is the only one which is necessarily
lossy, though in practice several of the other steps are likely to lose information due
to limitations of the implementation of the arithmetic. The resulting simplified co-
efficients are then (losslessy) entropy encoded, typically via a mixture of run-length
and Huffman encoding.

In addition to the desirable effect of providing an interchange format, and compres-
sion in the vicinity of 10:1 with minimal visual artifacting, a number of undesirable
things happen as a result of JPEG compression. Common artifacts in JPEGs include
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blocky high-contrast edges, color corruption where luminances for different colors are
similar, and application of a gamma curve reducing accuracy to 8 bits.

2.3 Scene Model

Image capture techniques can be split along a number of conceptual axes. One funda-
mental distinction among imaging techniques is separated by whether the objective
of imaging is conceptualized as recording photons or or creating a scene model. In a
photon-recording model, the objective is to faithfully record the light arriving at the
sensor during an interval. This view is is appealing in several ways; it is analogous
to film, conceptually simple, and requires minimal computational resources. It also
has several serious problems, the most fundamental of which have to do with the
properties of light itself. The particle nature of light causes photon shot noise (Also
sometimes called “photon noise” or “Poisson noise”): a statistical uncertainty [66].

Photon shot noise is worthy of more detailed explanation, as it is Central to the
justification for non-photon-recording sensing; the number of photons N measured
by a sensel over time t sampling a scene illuminated such that λt is the expected
incident photon count is given by the discrete probability distribution

Pr(N = k) =
e−λt(λt)k

k!

, a standard Poisson distribution. Being a standard Poisson distribution, its variance
is equal to its expected value, E[N ] = var[N ] = λt; or more usefully, shot noise (the
standard deviation of the signal) grows with the square root of the sampled signal.

Another weakness of photon-recording is that of lighting/color corruption. The
lighting in the scene may interfere with the sampling of the scene. Low or narrow-
band lighting in particular can easily cause incorrect representation . In the simplest
example, a surface which primarily reflects red light, such as a brick, in as scene
lit entirely with blue light will most likely appear black in a conventional image, as
none of the available light will be reflected from the surface to the sensor. A human
observer is likely to recognize the brick remains red, particularly if the scene lighting
is varying, due to their expectation of scene and color constancy. The issue of the
relationship between color and light discussed further elsewhere in this document, in
subsection 2.3.

In contrast, if the objective of image capture is conceived as capturing an accurate
model of the scene, a different set of design choices are selected. In the scene-modeling
view, arriving photons are viewed as unreliable, stochastic samples of scene properties.
Successive samples are used to refine a model of the scene; an area with very few
incident photons can be sampled over several intervals to obtain data that trends over
the noise level. An area which is saturated during one interval still has information
in the scene model from previous samples. TDCI falls firmly into the ‘scene model’
family.

A different framing which turns out to result in nearly the same division is whether
the sensor is interpreted as measuring photonic arrival rate or photonic arrival count.
This is an important but somewhat subtle point about quantizing photonic arrival
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energy at sensels. Traditionally, the charges stored in the sensels are interpreted as
photon arrival counts; the charge accumulated in a sensel during the sampling interval
is directly interpreted as the desired output. This provides a film-analog behavior.
In digital sensors, it is also possible to interpret photonic arrival in terms of photonic
arrival rates; the charge accumulated in a sensel for any given interval informs not
only the instantaneous value of that sensel, but also the rate-of-change of that value.
This rate-based view requires that multiple samples be considered, and leads to other
consideration of multiple samples; averages over many samples can be used to derive
information in areas where the instantaneous arrival rates are below the noise level.
These multi-sample considerations encode an assumption of scene consistency, and
lead to essentially the same behaviors as the scene modelling approach above.

Lighting Model and Scene Appearance

The notion of colors as specific frequencies/wavelengths of light does not correspond
precisely to human vision. A human viewers’ perception of colors is surprisingly
subjective, owing to both the physical mechanism by which human eyes sense light,
and . Human eyes contain a number of light sensitive cone cells, in three varieties
whose sensitivities have respective center frequencies of approximately 420 (“blue”),
530 (“green”), and 560 (“red”)nm wavelength [48]. The output signals from these
cone cells are then differentiated by opponent process cells, which also come in three
varieties; luminance opponent cells, which are stimulated by all three cone cell out-
puts, Cg opponent cells, which are stimulated by red and blue cone responses and
inhibited by green cone responses, giving red-green discrimination, and Cb opponent
cells, which are stimulated by red and green cone responses, and inhibited by blue
cone responses, giving blue-yellow discrimination.

This subjectivity carries useful advantages and disadvantages, mostly based on
the concept of color constancy; a viewer’s ability to recognize an object maintains
its color despite changes in lighting which can alter the wavelength or quantity of
reflected light. One such consequence is Metamerism; colors which can be situation-
ally perceived as the same, despite containing dissimilar spectral power distributions.
Metamerism is critical to color reproduction; for any given stimulus, a perceptu-
ally identical color can be generated by mixing different intensities of three RGB
primary-colored light sources, allowing for compact sampling, representation, and
reproduction of a large gamut with a simple three-color representation.

2.4 Image Processing and Compression

TDCI technology shares a variety of assumptions and techniques with existing im-
age and video processing techniques. This section discusses a number of adjacent
technologies, and their relationship with the concepts and methods of the TDCI ap-
proach. Many of these technologies’ commonalities are based in their shared notions
of scene consistency.
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Figure 2.5: Adelson Checkerboard Illusion: Square A is exactly the same shade of
grey as square B. ©Pbroks13 /Wikimedia Commons/CC-BY-4.0

Motion Segmentation

In many computer imaging techniques rely on motion segmentation — the interpre-
tation of sequential scene data into features and trajectories. Motion segmentation
is used both for image processing — extracting scene data from images — and video
compression, eliminating duplicate information from series of images. The typical
form of motion segmentation is rigid motion segmentation, the decomposition of a
scene into a set of regions or features, and the trajectories of their motion.

Rigid motion segmentation can be implemented in a wide variety of methods, from
simple differencing of sequential frames, through statistical classification techniques,
wavelet-based methods which distinguish features by scale and frequency, layering
techniques, and a variety of other mathematical models. Optical flow, detailed below
to provide specific examples, can be used as a form of rigid motion segmentation,
typically one which is primarily concerned with the motion extraction function.

Optical Flow

Optical Flow [13] is the study of the apparent motion of objects in a scene, caused by
the relative motion of the observer and scene. Optical flow is rooted in psychological,
now more trendily referred to as neuromorphic, models to describe motion-sensitive
vision in animals by James J. Gibson in the 1940s [67]. After the advent of computer
imaging, the optical flow view has become important in its own right, as it allows
computers to make inferences about captured image data in ways that are consistent
with the physical scene and/or a human observer of the data.

Like the TDCI model, the optical-flow view is deeply rooted in an assumption of
scene consistency, and the idea that the sensor is forming a scene model rather than
directly capturing reality. For optical flow to be sensible, much less useful, scenes
must be comprised of consistent elements, which can be recognized, moving slowly
enough that their motion from frame to frame can be computed.
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Optical flow can be computed with a large and growing variety of techniques, de-
scending from a wide variety of fundamental approaches including scene differencing,
structure matching and tracking, energy or phase models [13]. Many of these tech-
niques extremely well-established, and have been mainstay image processing primi-
tives for decades.

Optical flow is closely related to motion estimation and video compression. In
vision-like applications, computing scene and/or camera motion is often the desired
data, and other sensing is largely irrelevant. In video compression, optical flow pro-
cessing is valuable for allowing storage to be traded for computation; it is much
smaller to represent a series of frames as a combination of scene elements, some mov-
ing along mathematically encoded paths, rather than a series of separately encoded
images. These two uses, though rooted in the same mathematical techniques, differ
in one crucial aspect; in compression applications it does not matter whether the
camera or objects in the scene are moving, while in vision applications distinguishing
the two is both desirable and, unfortunately, typically unknowable.

Some sensors are designed specifically for optical flow imaging. By far the most
prolific example of such a device is the sensor used in typical optical computer mice.
These mouse sensors are extremely low resolution, low depth, but extremely fast
downward-facing cameras, coupled with stark controlled lighting, to enable a sim-
ple optical flow computation to generate a series of Cartesian offsets, replacing the
continuous rotary encoders found in mechanical mice.

TDCI encoding may enable new, convenient optical flow computation techniques
owing to the inherent encoding of per pixel time-difference data. Unfortunately the
TIK image format family currently in use does not localize this data in ways that
obviously lend themselves to inexpensive optical flow calculations.

It would also be desirable that a capture device be able to model camera movement
relative to the scene, maintaining the sene model as constant and compensating
for the camera motion. Embedding a motion sensor — as is already commonly
done many cameras for for orientation detection, for stabilization, etc. — allows a
certain amount of automation. Existing optical flow techniques also provide potential
options for detecting and compensating for camera motion, but they may or may not
be tractable for real-time, in-camera capture, as in-camera compute resources are
frequently limited.

Another consistency assumption made in many imaging and sensing applications
is that the scene brightness will remain more or less constant for periods much longer
than the sampling period. The rise of pulse-width modulation (PWM) controlled
LED lighting causes a minor problem for systems that depend on this assumption of
brightness consistency, including TDCI. Many modern LED-based lighting systems
are controlled by PWM(Pulse Width Modulation), which produces light-dark cy-
cles at frequencies in the 100-1000Hz range, or with waveforms which are not simple
sinusoids or even square waves. As an example, a waveform obtained from a green
LED used as a sensor by connecting it across the inputs of a suitably biased Mi-
crochip MCP6002 Operational Amplifier, read out with the integrated Oscilloscope
of a Digilent ElectronicsExplorer is shown in figure 2.6, illustrating the waveform
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Figure 2.6: Waveform captured from an LED desk-lamp set to less than full bright-
ness. The frequency is around 60Hz, but the shape is decidedly not sinusoidal.

of a TaoTronics TT-DL27 LED desk lamp with controllable brightness and color
temperature set to an “intermediate” brightness.

Fortunately, these flickers are are imperceptible to humans due to persistence of
vision, appearing as the average value of the lighting, so capturing this flickering is
not generally desirable in imaging systems. Unfortunately, whether or not they are a
feature of interest, large instantaneous scene lighting changes which, unless expressly
detected and discarded, can beat with the sampling frequency and/or dramatically
explode the size and frequency of scene-change records in imaging systems. Just
as many modern video cameras have flicker elimination settings (sometimes auto-
ranging, sometimes specific “50Hz” and “60Hz” settings) for eliminating power-line
frequency flicker in various regions as exhibited by florescent lighting, a robust capture
system system that samples continuously rather than in a frame-oriented manner will
require at least some degree of compensation for these phenomena. The most likely
candidate is building a model of the lighting so the data rate does not balloon because
the periodic change is accounted for in the encoding. With multiple sources operating
at potentially a range of frequencies and waveforms, that may be considerably com-
putationally expensive. A series of brief experiments connecting LEDs with different
peak sensitivities to a MCP-6002 Operational Amplifier to observe the waveform of
the incident light produced by various common light sources were undertaken, but
didn’t reveal any patterns worthy of detailed discussion.

Neither TDCI nor IMEV in general manage regular lighting fluctuations in an
efficient way. However, all the simple ways to deal with such changes depend on
having the scene lighting uniformly following the same cycle, and that is not the
case with many forms of LED and other lighting now in use. For example, delying
an exposure to hit the peak of a lighting cycle only works if the cycle is simple
and repeating. The inefficiency is limited to effective compression achieved in IMEV
encoding; the waveform is still encoded and sampling can be manipulated with full
after-capture knowledge of the waveform patterns. For example, the work presented
in this dissertation would allow virtual exposures to ignore arbitrary portions of the

43



cycle, constructing exposures using only light from a selected parts of even irregular
cycles.

Poisson Image Editing

One of the underpinning assumptions that makes TDCI practical is the notion of
scene constancy. Scene constancy is the notion that the space- and time- rates of
change in a scene will be slow relative to the timescale and field of view of the image
capture. This constancy is already exploited in a number of widely-used techniques.
Elsewhere in this document I have discussed the utility of this tendency for video
compression, it is also useful for seamless editing. Poisson image editing [68] is a
well-established family of image processing techniques which operate based on similar
assertions of scene constancy. Poisson editing is somewhat mathematically absurd
but readily intuitively motivate-able. Essentially, this process is to guarantee slow,
human-imperceptible gradients in intensity [69] on the edges of features, while setting
the interior of a region to a specific desired appearance. In the originator’s own
words, this is accomplished with “Poisson partial differential equation with Dirichlet
boundary conditions which specifies the Laplacian of an unknown function over the
domain of interest, along with the unknown function values over the boundary of the
domain.” Fortunately, when discretized (which is the only relevant case) this process
reduces to a reasonably manageable quadratic optimization problem.

Copyright© Paul Selegue Eberhart, 2024.
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Chapter 3 Experiments

A number of experiments have been undertaken aiming to explore ways in which mod-
ern digital cameras diverge from the abstractions and assumptions under which they
are typically operated, and about ways in which those properties can be leveraged to
enhance their capabilities. Many of these experiments were published as papers, but
collectively they suggest a possibility of re-conceptualizing the use of digital cameras
in a way that would allow users to better leverage the properties of the cameras.
In particular, changes to the software stack and user interface should allow users to
manipulate parameters traditionally considered set at the time the picture is taken
post-capture, repeatedly, and with finer granularity than traditional photographic
technique.

These experiments are presented in roughly chronological order. Successive ex-
periments informed not only the direction of later experiments, but the overall under-
standing of the requirements, possibilities, and challenges for a model of photography
based on capturing IMEVs and later rendering images from them with arbitrary
functional control of the process. These experiments follow two major lines of in-
quiry. One line was focused on empirically determining the actual low-level behavior
of modern camera systems, with an eye toward capturing high-quality IMEVs. The
other line was focused on the processing of IMEVs to create images. There was, of
course, significant interplay between these two efforts, as findings in one often lead
to directions for the other.

3.1 ISOLess

One of the motivations for this work, and the TDCI effort in general, is the obser-
vation that many digital cameras appear to be “ISO-Less” (or, more formally, “ISO
Invariant”) — that is the user-set “film speed” or ISO setting on the camera is partly
or entirely implemented as digital gain in the processing pipeline, rather than a change
to the gain of the sensor itself. Much of the information about ISO-invariance, espe-
cially prior to 2015 when the experiment discussed in this section was performed —
came from hobbyist and enthusiast quarters, which tends to be regarded as unreliable
in academic circles. This is despite the fact that information from stable pseudonyms
on the internet is generally highly reliable, and who has spent a significant amount
of time interacting with academic output is acutely aware that results published in
academic venues should be considered inflated and untrustworthy until independently
verified, as authors respond to the many incentives to hype questionable output. So,
the experiment inspired imaging research involving devising and conducting a series
of experiments to determine the degree of ISO-Less behavior in a range of consumer
digital cameras.

In this series of experiments, 19 different cameras capable of RAW capture released
by Canon, Fuji, and Sony between 2000 and 2014 were tested to determine how ISO-
invariant their capture behavior actually is. The spread of cameras tested is described
in table 3.1 and pictured in figure 3.1. These cameras represent quite a wide spectrum;
11 are CCD based while 8 use CMOS sensors. They operate on RAW formats from
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Figure 3.1: The spread of cameras used in ISO Invariance Experiments

Camera Model Year Prog Tech MP Min ISO Max ISO BPP
Canon G1 2000 CCD 3 50 400 10
Sony F828 2004 CCD 8 64 800 14
Canon A620 2005 CHDK CCD 7 50 400 10
Canon A640 2006 CHDK CCD 10 80 800 10
Sony A100 2006 CCD 10 100 1600 12
Canon A590 2008 CHDK CCD 8 80 1600 10
Canon SD770 2008 CHDK CCD 10 80 1600 12
Sony A350 2008 CCD 14 100 3200 12
Canon A480 2009 CHDK CCD 10 80 1600 12
Sony SLT-A55 2010 CMOS 16 100 12800 12
Sony NEX-5 2010 CMOS 14 200 12800 12
Fuji X10 2011 CMOS 12 100 3200 12
Sony NEX-7 2011 CMOS 24 100 16000 12
Canon A4000 2012 CHDK CCD 16 100 1600 12
Canon EOS-M 2012 ML CMOS 18 100 12800 14
Canon ELPH115 2013 CHDK CCD 16 100 1600 12
Canon N 2013 CHDK CMOS 12 80 6400 12
Sony A7 2013 CMOS 24 50 25600 14
Sony A7 II 2014 CMOS 24 50 25600 14

Table 3.1: Selected properties of cameras used in the ISO-invariance experiments.

10-14BPP, with minimum claimed ISOs from 50-100 and maximums from 400-25600.
Their processing pipelines come from different generations and different vendors.

To create an even fairer test, in a subset of cameras where it is reasonably straight-
forward to do so, images were exposed, digitally boosted, and processed by the same
in-camera pipeline as the native-ISO exposures. In the CHDK-enabled Canons, the
lua scripting interfaces in [63] expose the controls for the image processing pipeline.
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Figure 3.2: JPEG Crops from Canon A4000 at ISO 1600, 16x ISO 100, and 16x ISO
100 Filtered

These facilities include functions to load a RAW into the in-camera JPEG engine
with control of the parameters, and a facility for adding or averaging RAW frames,
which are all that is required for the experiment. To generate the test sets, exposures
were taken at the base ISO, multiplied by successive addition, eg. i=i+i; i=i+i;
i=i+i; i=i+i; to digitally boost by a factor of 16, then run through the in-camera
JPEG encoding pipeline with the parameters set as though it was set to ISO1600.
A series of crops from an exposure processed in this manner are shown in figure 3.2.
The left-most image is from a native, suitably-exposed ISO1600 exposure, the middle
frame is from an exposure shot with all other settings held constant but the gain
reduced to ISO100 then the RAW fame multiplied by 16 and rendered through the
camera’s JPEG engine, and the third crop is the second with a simple de-noise filter
applied. The most interesting observation is that the boosted ISO100 image appears
to preserve more detail than the native ISO1600 image, but with considerably more
noise. If a simple denoise filter is applied, as in the third sample, most of the addi-
tional detail is preserved while the majority of noise is eliminated, leaving a image
that is not only equivalent to but by most measures superior to the native ISO1600
exposure.

In a digital sensor, the Sv term in the APEX formula should really be split;
Sv = Svanalog +Svdigital, where Svanalog is a coarse control set at time of exposure by
altering the analog gain of the sensels and/or ADC used for readout, and Svdigital is
a fine control applied computationally during processing. Traditional exposure and
integration are commingled, but to reiterate the point, in a TDCI-type system, they
are separated, and the integration step is manipulable in post-processing.

Conceptually, this work exposes that the ISO film-speed analogy is a crutch for
simplifying the computations required to generate a good exposure into something a
human operator can do on-the-fly, and in particular was designed around traditional
sensitized-emulsion with a fixed sensitivity. The typical formula used to determine
exposure from ISO film APEX system, described in section 2.1, or one of its integer-
math-friendly variants. APEX is an effective way to generate desired exposure for
a particular level of incident light, but is effectively a point computation; in scenes
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Figure 3.3: A picture of a spinning fan captured by a Sony A7RII under different
shuttering modes. Insets show the banding pattern induced by the non-DC lighting
interacting with the electronic shutter.

with significant dynamic range, exposing according to APEX requires that the user
select the light level at a particular point in the scene or average of an area for correct
exposure, and tolerate poor exposure elsewhere — or cover it up later with stitching
or manipulation in post-processing.

Some cameras do have controls exposed to manipulate Svanalog at a spatial granu-
larity smaller than the whole sensor at least to a limited degree. In particular, many
Canon DSLR models operate on a line-oriented readout, and hackers have determined
that the register controlling the analog gain can be altered between line readouts —
as in [70] — sacrificing vertical resolution for extended dynamic range. The fact that
this method for HDR imaging is effective further demonstrates that the frame-at-a-
time APEX style exposure computation inherited from film does not make effective
use of digital image sensors.

Contemplating the implications to exposure practices of this work is the genesis
for many of the ideas explored in this dissertation.

3.2 Shutter Artifacts

A small related project culminating in a poster at EI2019 explored a number of
shuttering artifacts. This paper studied the artifacts created by different kinds of
shutters: vignetting from traditional mechanical shutters not being precisely in-plane
and having transit times, and non-global electronic shutters’ various sorts of temporal
and spatial de-synchronization. Some material from this work is integrated into this
document in the front matter in subsection 2.1, the full paper is [4].

This work was largely ancillary to the TDCI work, but is relevant in that it was
making a close study of the timing behavior of widely-used shuttering mechanisms, an
understanding of which is required to properly integrate sensor data into an accurate
representation of the scene. It also serves as a further justification for TDCI-style
decoupling of capture and integration; constructing a model of the incident light at
each point from the available data allows many of these artifacts to be computation-
ally avoided — or conversely, to be synthesized to create the appearance of specific
historical capture devices.

A specific set of phenomena investigated in this work is illustrated in figure 3.3,
showing a 1/8000s exposure from a Sony A7RII pointed at a rotating fan blade,

48



Figure 3.4: An image from a Sony A7RII illustrating the effects of the different shutter
regimes.

showing both the dislocation of the moving parts of the scene (the distorted fan
blades in the third image), and, magnified in the inset, the banding pattern created
by the beating of the frequency of the AC light source in the scene and the line-by-line
clearing and reading.

Another less well-known phenomena explored in this work is the artifacts produced
by operating cameras in electronic first curtain mode. In this mode, the initial zeroing
of the sensor is not accomplished by a mechanical shutter, but by electronically
dumping charge from the sensels. The sensor is then allowed to gather light for
the selected interval, and the process is stopped by a mechanical focal-plane shutter,
and the result read out. As shown in figure 3.4, the mechanical focal plane shutter
creates shading, as it is not exactly in the image plane (allowing off angle light to
encroach), not capable of instantaneous acceleration, and its travel is not correlated
with the initial clearing.

Furthermore, this work shows that camera users are already interacting with spa-
tially or temporally non-uniform exposures (discussed in a later section). In fact, it
exposes several kinds of currently-tolerated non-uniformity: the incident light that
creates a rolling shutter effect is obviously not gathered at the same interval for the
entire scene, though in an undesirable way not under user control, rather than con-
figured and leveraged to the user’s advantage. These effects are discussed further in
the context of desirable non-uniformity.

3.3 Camera Motion

In the introductory discussion about imaging technologies about event cameras,
TDCI, and Poisson image editing, problems due to correlated changes are briefly
mentioned. These technologies share a reliance on scene constancy: the idea that the
contents of the scene are unlikely to change extremely quickly relative to the record-
ing mechanism. For the capture devices, these problems take the form of readout
bandwidth saturation due to correlated changes, resulting in lost scene data as the
update traffic exceeds the read-out bandwidth. These correlated changes can take
several forms, such as sudden changes to scene lighting, or motion of the camera itself.
These features also cause problems for conventional frame-oriented capture devices,
introducing undesired artifacts like flicker or blur. More sophisticated modeling that
incorporates lighting or camera motion can reduce the severity of these problems.
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Figure 3.5: Measurement Orientations for ShAKY attached to a Canon 5DIV

As noted in the introductory material, employing some degree of lighting model in
the capture device is well established in the form of filtering for line-frequency flicker
elimination. More recently, analyzing camera motion in an effort to cancel blur has
become common. Many modern digital cameras contain an IMU (Inertial Measure-
ment Unit) tied to a IBIS (In Body Image Stabilization) or OIS (Optical Image
Stabilization) mechanism which can move the sensor or lens elements to correct for
small amounts of camera motion. The sensors embedded in cameras are not terribly
consistent, and the data they generate is not generally stored in a user-accessible way.

Therefore, as a preliminary step to study camera motion, in the summer of 2019
members of the KAOS lab developed a hardware/software system and test protocol
to instrument a camera in use, capture detailed motion data synchronized with the
exposure along several axes shown in figure 3.5, and convert the data into forms
suitable for study.

This system, with the somewhat tortured name “ShAKY” (SHift Angle Ken-
tuckY) includes several hardware and software components. On the hardware side,
3D Printed module which attaches to common cameras via a standard 1/4−20 UNC
camera mount thread contains an Arduino Pro Micro ATmega32U4 development
board, a MPU-9250 9-axis IMU to read motion, and a 3.5mm TRS connector to
interface with the flash sync signal of cameras which support it. An Arduino sketch
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Figure 3.6: A completed ShAKY device, showing the internal electronics

flashed to the Pro Micro to calibrate and read out the IMU and monitor for sync
signals, both of which are streamed to a host computer via USB. This module is
shown in figure 3.6.

On the host computer, a single-file C program hostshaky.c, which shells out to
GNUPlot [71] for visualization, performs integration, filtering, and analysis of the
raw sensor data into motion data. The processing is performed on a host computer
to maximize data-rate; the micro-controller in the camera-attached module is pro-
grammed to sample and encode sensor readings at the highest rate sustainable for
the device and connection to maximize temporal resolution, while the more com-
putationally intensive analysis happens on the much larger resources of a modern
PC.

The experimental procedure is then implemented by a web form displayed on a rel-
atively 4k television set, which presents a questionnaire for relevant details about the
camera, lens, human subject under test, and experimental conditions, then encodes
them into a QR code integrated into a test pattern for the subject to photograph.
This photograph of a QR code is thus inherently tagged by the image content with
the experimental data, and by the camera-generated EXIF data with finer details
of the exposure for later analysis. An pair of example readouts taken with a Sony
A6500 with IBIS and EFC disabled is shown in figure 3.7; the left graph shows the
motion with the camera still on a tabletop while the right figure shows motion while
hand-held.
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Figure 3.7: ShAKY data comparing still on a tabletop (left) vs. hand-held (right)

Only a small amount of user testing was performed with this device, but the
preliminary results do indicate this simple, low-cost, open-source device can provide
insights into camera motion. Many of the preliminary findings were not particularly
surprising: using a viewfinder (and hence holding the camera closer and making a
third point of contact between the operator and camera) roughly halves the amount
of measured camera motion. Using electronic first curtain shooting on cameras which
support electronic or mechanical shuttering tends to meaningfully reduce shake at
the time of exposure.

Other results were more surprising: individual operators are not particularly con-
sistent, the camera itself produces a substantial amount of the observed motion. A
particularly surprising finding is that, relative to a single-handed grip, holding the
camera with two hands not only does not result in reduced camera motion, but tends
to convert less-photographically-problematic x,y,z motion into more problematic pitch
and roll.

This work was published as “Characterization of camera shake” at Electronic
Imaging 2020 [72].

3.4 Non-Uniform

A major promise of TDCI-like pipelines which has not been previously explored is the
ability to produce exposures which are spatially or temporally non-uniform. To define
terms, a spatially non-uniform exposure is one where the exposure parameters for each
site in the rendered image is not the same — the gain or time interval from which
light is integrated can be varied over the area of the rendered image. A temporally
non-uniform exposure is one in which the integrated light is not handled consistently
across time. Conventional exposure approximately — excluding previously discussed
shutter artifacts — treats exposure as a single interval at a constant gain for the
entire frame. Temporally non-uniform exposure consists of integrating incident light
from multiple different periods, weighting light from different times in the exposure
interval differently, or (overlapping with spatial non-uniformity) building the frame
from different intervals.

If, for example, the dynamic range of a scene exceeds the dynamic range of the
sensor, a traditional integrate-at-exposure camera cannot generate an image which
preserves detail in the entire scene. However, if the integration is performed compu-
tationally after the fact, there is no restriction that all spatial segments be integrated
with the same function, and suitable parameters can be chosen for sections of the
image independently.
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3.5 Exposure Interval

In a conventional frame-based camera, the photosensitive element — film or digital
sensor — is exposed to light for a fixed interval by the opening and closing of a
shutter. In the archetypal camera this is accomplished with the use of a focal-plane
shutter; a pair of light blocking curtains which slide over the sensor one after the
other, with the intervening time comprising the shutter speed.

With a focal plane shutter, and a relatively long exposure, a first curtain opens,
allowing light through the lens to reach the sensor, and some time later the second
curtain closes, cutting off the exposure. This scenario provides a very good approxi-
mation of the whole sensor being exposed for the same time interval, but that is not
always desirable. In scenes with very large variations in brightness, exceeding the
dynamic range of the sensor, a uniform exposure time will over or under expose parts
of the scene. That is, if the bright areas of a scene are properly exposed to capture
a maximum amount of detail, the darker areas may be under-exposed and simply
appear dark, losing information in that part of the scene. Conversely, if the darker
areas of a scene are properly exposed, the brighter areas may be over-exposed and
saturate, losing information about that part of the scene.

For very short exposure intervals, a focal plane shutter allows light to strike the
sensor by by moving both curtains at the same time, releasing them with an offset less
than their individual travel time, thus traversing a slit between the first and second
curtain across the sensor. This scenario is a poorer approximation of the entire sensor
being exposed for the same interval — while the amount of time each sensel is exposed
for approximately the same amount of time, the area along the leading edge of the
frame is exposed at an earlier absolute time than the area at the trailing edge of the
frame. This offset can result in smearing or other artifacts, particularly if objects
are moving in the scene fast enough to create substantial displacements during the
shutter interval. Other shuttering methods, such as irising leaf shutters or various
electronic dump-and-readout schemes are also employed and create their own distinct
artifacts in the resulting image, several of which are detailed in [4].

Some photographers may alter the exposure interval in intentional ways to create
specific desired effects. The best-known of these alterations is to shoot multiple ex-
posures on the same photosensitive frame, effectively compositing the incident light
during multiple images into a single photo. These techniques, however, are physically
complicated to set up, difficult to predict the results of, and require that the setup
be executed perfectly at the time of image capture(s). The difficulty of physically
realizing complicated exposures, and simplicity of achieving similar effects by com-
putationally compositing images after the fact mean these effects are already most
often accomplished by post-processing.

Non frame-based capture schemes like TDCI allow photographers to avoid these
problems with exposure by computationally integrating the incident light over one or
more interval(s) to create the final image. This means different portions of the scene
are not competing for exposure parameters, as they are being sampled independently.
Likewise, even the possibility of shuttering artifacts is eliminated, since if the sensels
are continuously independently sampled, there are is no correlated scan pattern which
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could produce artifacts. Most importantly, computational integration separates the
processes of sampling the scene and exposing the image, so once sampled, the same
interval of incident light can be exposed over and over to produce images, allowing
the photographer to tweak the exposure parameters repeatedly, viewing the resulting
image and adjusting until the desired effect is achieved.

3.6 Film Speed

In a conventional fame-based camera, the sensitivity to incident light (gain) is set as
a whole-frame parameter, referred to as “Film Speed” for historical reasons. In an
actual film camera, this gain is set by the photo-chemical sensitivity of the film being
used, measured in modern times with the ISO 5800 system. In a digital cameras, the
gain is determined by the “ISO Setting” in the camera. This setting’s properties are
specified by analogy to the behavior of film in the ISO 12232 [39] standard. In either
case, this setting is fixed for the entire frame, for the entire interval of exposure. This
whole-scene gain setting is often undesirable as it limits the dynamic range which
can be represented in a single capture. Much as for the exposure interval, setting the
gain to suit one part of a scene will often leave other parts dramatically under- or
over- exposed, losing information about those areas as they saturate or fail to fill in
details.

When performing integration computationally after the fact, there is no reason the
gain must be uniform for the entire scene. In this scenario, a photographer can specify
different gains, or gain functions as above, for different portions of the scene such that
each portion of the scene is exposed as desired. There is significant precedent for the
desirability of such a feature, as a number of “tricks” allow modern digital cameras
to evade whole-scene exposure settings, albeit with significant caveats, discussed in
section 1.2.

A second extant technique for cheating whole-sensor gain with modern digital
cameras is that the sensor ISO setting is often applied, all or in part, as a digital
multiplier in the post-processing [2] after the sensor has been read out, rather than
by changing the behavior of the sensels. This property is, lately, referred to as
“ISO Invariance” or “ISO-Less shooting”. This after-the-fact gain function means
information is only gained or lost based on the ISO setting during the image processing
pipeline, not during capture. As a result, if images are captured at an ISO invariant
camera’s base ISO, all the scene information the sensor is capable of capturing will be
captured and retained, albeit typically with less-than-pleasing brightness. The image
can then be brightened in post-processing, essentially applying digital gain later when
the photographer has the advantages of time, multiple tries, and additional compute
power to make superior decisions about the gain factor. The gain can also be spatially
non-uniform — selectively brightening or darkening parts of the scene is an extremely
common post-processing manipulation. If the camera used was ISO Invariant this
practice is effectively equivalent to selectively changing the sensitivity of the capture
device. This technique, however, does not extend the range of the captured data
beyond what the sensor can represent for a fixed interval, and may actually shrink it
if the brightening or darkening range-clips any pixels. Employing this technique also
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complicates selecting an appropriate shutter speed, since the captured image will be
intentionally under-exposed at the time of capture.

By leveraging TDCI encoding, similar effects can be produced while avoiding many
of the disadvantages of the methods that rely on traditional photographic modes.
Some methods for using TDCI processing to generate images with larger dynamic
range and fewer artifacts were previously explored in [73], but the techniques in that
work retained the practice of using a single uniform sensitivity and exposure time.
Specifically, if the incident light is recorded as a waveform and sampled after the
fact, all of the differently-integrated regions can be integrated with time centered
at the same instant, avoiding the issue of artifacts due to changes in the scene be-
tween sequentially-shot bracketed exposures. Even better, recording the incident light
variation rather than a series of exposed images removes the requirement that the
parameters for each of the constituent exposures be pre-selected. Since there are no
pre-determined exposures under this scheme, there is no danger of clipping regions of
the scene due to lack of data or saturation. This allows the selection of the parame-
ters with which regions of the scene are exposed to be done after the fact, as many
times as is necessary, until precisely the desired exposure parameters for each part of
the scene are found.

3.7 Precedent for Non-Uniform Exposure

There is precedent for the concept of generating variously non-uniform exposures,
but existing techniques for generating non-uniformity photochemical or digital pho-
tography come with significant limitations which should be improved upon by the
techniques proposed in this work.

Many of the closest precursors to arbitrary non-uniformity are darkroom tech-
niques. Dodging and Burning [74], the practice of adding or removing light during
the print making process allow a degree of spatial control over effective exposure.
Dodging is the process of selectively shielding the print paper from light passing
through the film, by physically interposing shaped opaque masks between the film
and print over the areas to be affected when it is exposed on an enlarger, casting shad-
ows which effectively lighten the affected region. Burning, conversely, is the practice
of selectively allowing additional light to fall on specific regions of the paper to create
a darker area, typically by imposing an opaque mask with holes cut in the desired
areas part way through the print exposure interval, cutting off the rest of the frame.

Typically, these effects are achieved by manually cutting a mask of the desired
shape and size in a piece of opaque non-reflective material- such as dark colored card
stock- then hand-holding it in the optical path of the enlarger with wire or line. The
support structure can be hidden by keeping it in constant motion, and the edges of
the affected area can be modulated by modifying (perhaps over time) the distance
between the mask and paper — a mask very close to the paper produces sharp edges,
and they edges become larger and more diffuse as it is drawn further away. Adams
also suggests techniques like dripping developer solution at different concentration or
temperature to effect local changes.
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All these techniques are manual, labor intensive, bound to specific photochemi-
cal processes, and restricted to locally altering the interpretation the light gathered
during the exposure rather than actually altering the interval or gain of that light.
Analogous digital practices — selecting areas of an image for selective lightening,
darkening, or dynamic range manipulation — are certainly less laborious but only
slightly more flexible. The analogy of masks to guide exposure has been extremely
valuable in the development of the techniques presented in this work.

Other extant methods of generating non-uniform exposures with existing tech-
nologies are based on multiple exposures. These techniques are quite ride ranging;
the multiple exposures can be performed on a single piece of film or sensor readout
at the time of capture by repeatedly opening and closing the shutter, or by after-
the-fact compositing of several single exposures during the development process. In
a controlled environment, similar effects can also be accomplished by modulating the
light on the scene rather than the shuttering mechanism, as in stroboscopic photog-
raphy when the shutter is opened for a relatively long interval, and a flash is fired for
multiple controlled shorter intervals.

The content and parameters of the separate composited images can vary widely.
For artistic purposes, the multiple exposures may be related only by the intent of the
photographer. For more consistent compositions of multiple exposures, a common
practice “stacking” in combination with “bracketing”: taking a series of exposures
with different parameters with the possibility of combining the desired features of
several to achieve effects not possible through the lens. Exposure can be manipulated
by stepping the shutter speed, aperture, or (in a digital camera) sensitivity across a
range, then regions of the frames exposed as desired in the constituent frames can
be combined. Compositions of multiple differently exposed frames can produce a
dynamic range larger than is achievable directly with the same equipment.

In digital camera systems the technique can again be extended in various ways; as
digital cameras are not bound by the static sensitivity of a roll of film or the parameter
modification speed of a human operator. As a simple example, when bracketing, the
onboard computer can vary parameters between successive frames almost as fast as
the limit of the desired shutter time. Another even broader example is that where
optical techniques are restricted to additive composition of multiple exposures digital
setups may use other compositing schemes, such as blending or subtraction. Digital
techniques for compositing multiple exposures also afford more flexibly an easily mask
out which parts of the final image come from which exposure, including employing
various sorts of automation to make the decision without a human operator. Some
digital cameras, or cameras integrated into computerized devices even allow some
of these techniques to be automatically executed in-body; features with names like
“Auto HDR” or the automatic focus stacking features advertised by Olympus [75].

However, the extended digital features do not remove the restriction that the
intervals represented by the time individual exposures cannot be overlapping, creating
issues for composition, such as discontinuities in the case of moving scene elements.
It also does not allow wide after-the-fact adjustment of individual exposures; for
example, if a portion of a scene is dramatically over- or under- exposed for every frame
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of a bracketed sequence, nothing can be done after the fact to recover information
about that part of the scene.

Focus bracketing and stacking bears mention as it continues the analogy of this
work to plenoptic cameras’s ability to adjust focus post capture; while focus stacking
allows a series of frames which were correctly focused, and the focus correctly spaced,
at the time of capture to generate extended depth of field, a plenoptic camera can
generate extended depth-of-field without relying on a set of step-wise components
which were focused correctly at exposure time.

Many of the tools developed in the current work are inspired through a lens of
enabling more general, more flexible, and more powerful versions of these existing
techniques.

3.8 Non-Uniform Over Time

When performing integration of incident light computationally after capture, there is
no restriction that the virtually admitted light must be uniformly “exposed” over a
single interval as with a physical shutter. Integration gain functions can be specified
which simulate mechanically implausible shutter behaviors with only a small amount
of extra difficulty. For example, the gain function can have multiple distinct peaks,
producing an effect analogous to multiple exposures. Even less physically realizable,
the gain function can slope, vaguely physically analogous to imposing a time-varying
neutral density filter over the lens, or (somewhat less precisely, as slope variations
will not affect depth of field) irising the aperture during the exposure. It is, of course,
entirely possible integrate with gain functions that could not be practically realized
by a mechanical means, though the more radical the exposure function, the less
unprecedented the effects will be.

In the first Octave-based prototype implementation the integration gain function
is represented as a composite spline. Users familiar with image editing will, whether
they know it by that name or not, posses at least a passing familiarity with compos-
ite Bezier curves, used for drawing arbitrary lines in a wide variety of image editing
applications, or (Centripetal) Catmull-Rom splines [76], also used in image editing
for specifying color curves in many photographic editing tools, and modeling cam-
era motion in video processing. Initially, Centripetal Catmull-Rom splines seemed
particularly appealing because they are straightforward both to visually manipulate,
and to compute the value of at arbitrary position, and already widely used in imag-
ing applications. Furthermore, Centripetal Catmull-Rom are inherently smooth and
non-looping (mathematically; twice differentiable), making them immune to ambi-
guities or discontinuities. Unfortunately, a single Centripetal Catmull-Rom spline
can represent only a very limited family of functions, which does not include many
trivially-interesting cases.

A more general representation of temporal gain functions is therefore required;
the method in this phase of experiments used normal cubic splines [77] as a highly-
flexible representation which retains the desirable property of always being twice
differentiable. Using this scheme, each the integration gain function is specified as a
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Figure 3.8: Example Integration Function from Octave prototype

series of control points. To use the integration gain function, the domain of the spec-
ified control points is mapped to the interval of recorded light (allowing for arbitrary
granularity), such that the gain to be applied to the incident light at time tcurrent into
the sampled interval is the value of the normal cubic interpolation at tcurrent/tmax.

While the natural behavior for a computer scientist is to specify the temporal
integration gain function as an equation or series of control points, perhaps over a
unit interval, for most users this will be extremely awkward. An elegant interface
would present the user with an initially horizontal line that they can interactively
modify by clicking and dragging to add and modify control points. The integration
scale factor for each instant is then the height under the curve at that distance into
the interval, which is mathematically straightforward, readily visually representable,
and leverages existing mental models likely to be available to those accustomed to
image editing tools. The horizontal (x) axis of this function represents time, to be
stretched over whatever integration interval is selected. The vertical (y) axis of this
function represents the instantaneous gain to be applied to the incident light at time
(t/interval) ∗ fnmax.

Figure 3.8 shows an integration gain function specified with this method repre-
senting a double exposure, with the first exposure ramping very quickly to very high
gain then somewhat more slowly tapering, and the second very quickly flicking on
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Figure 3.9: Capture of riding mower integrated with the function shown in Figure
3.8

and off to a smaller maximum gain. Figure 3.9 shows the result of applying that in-
tegration function to a capture of a passing riding lawn mower, rendered from 30FPS
video. Note that the resulting image contains two displaced images of the mower.
The first mower image corresponds to the first spike in the integration gain function.
It is mostly opaque, picks up suddenly with a sharp leading edge, then slowly fades
away in a smear as though it were moving quickly relative to the shutter speed. The
relative opacity is because the majority of the light energy integrated at those loca-
tions in the frame come from the first spike, while the sudden appearance and slow
taper are the result of the shape of that first spike. The second mower image, further
down the row, corresponds to the second spike. It is relatively sharp and un-smeared
because the width of the spike is short compared to the speed the mower was moving.
However, it appears relatively translucent because the majority of the light energy
integrated at its location was contributed by the background in the earlier portion of
the exposure, rather than the time when the mower was at that position.

One interesting detail of arbitrary integration functions is that it is perfectly
possible to specify negative gain for some portions of the interval. This behavior
would be physically analogous to the sensor subtracting the contribution of incident
light during portions of the exposure, rather than adding it. This is not something
that is physically realizable in a conventional camera, but is very useful creatively
for tasks such as subtracting static features from a scene. Partially negative gain
functions also provide a ready way to provide even average brightness for differently-
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integrated parts of the scene to compensate for intervals with particularly high gain
applied.

3.9 Non-Uniform Over Space

Non-uniform integration over space is analogous to creating a scene-specific piece of
film whose sensitivity to light varies across it’s surface, or the practice or selectively
lightening or darkening portions of a scene in post-processing. While applying dif-
ferent gains to different portions of the scene in order to properly expose each is
obvious, specifying the spatial regions on which to apply the different gains is some-
what mechanically awkward. Extended discussions on the matter resulted in sev-
eral unappealing options — specifying by mathematical function (awkward for the
user), specifying by rectangular region (restrictive), specifying by arbitrary polygons
(complicated and restrictive), or specifying by bucket-fill algorithm (computationally
difficult, self feedback problems) - and one promising avenue.

The promising method is to use a mask, drawn as a bitmap of the same res-
olution as the capture source, colored with a different pixel value for each region
to be processed. This covers all the functionality of arbitrary geometry or function-
determined regions by offering users a simple, portable, well-known format to generate
their complex masks in, while allowing straightforward use cases to simply draw their
desires in a basic image editor. A bitmap mask for region definition also allows for
straightforward batch processing, either by applying the same generated or otherwise
pre-prepared mask for multiple exposures, or enabling the use of an external tool to
perform higher-level per-frame functions, such as object tracking, to generate sequen-
tial video frames from a TDCI stream with specific exposure properties for different
objects in the scene.

The format currently being used to express these spatial exposure masks is a 8-
bit P2 PGM with the same spatial size as the TDCI stream to be exposed. Each
of the 255 gray levels possible in the format represents a distinct region, and the
value of each pixel in the mask PGM specifies which exposure region to apply to the
corresponding pixel in the input stream. This way, a simple gray-scale mask can be
generated where each pixel in the mask is tagged with the encoded value of the gray
level. Each gray level is then assigned a particular integration function. This provides
a number of regions far in excess of any easily-conceived practical application, avoids
forcing users to deal with any specialty tools or mathematical specifications, and is
extremely straightforward for software to both generate and ingest. Each numbered
region is then assigned an integration function with which to ”expose” that portion
of the image.

This technique is quite general. It is possible to not only vary the integration
parameters for portions of the scene, analogous to existing HDR techniques, but to
directly produce temporally composite exposures. In such an exposure, the output
image is generated from sections which spatial sections of the image are are integrated
from temporally differently-centered and possibly non-overlapping sub-sections of the
sampling interval, opening a wide range of options. One simple application for this
combined case might be selecting independent intervals for each face in a group picture
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to give each pictured individual open eyes and pleasing expressions, even though
though they did not happen at the same time. Another application could be masking
a moving object from the background in a scene, and integrating the moving part
with a short, sharp-edged, high-gain integration function, and the background with
a longer, shallower, lower-gain integration function on the same center, yielding an
image with a sharp object with a minimum of motion blur on an apparently well-lit,
detailed background.

Including a simple editor which would provide a transparent overlay of a frame
preview and some basic drawing tools to generate region mask bitmaps inside the
TDCI exposure tool is an obvious nice-to-have, but is not in the critical path for
demonstrating the technological features. This is especially reasonable as most users
likely to be using complicated exposure behaviors are likely to already have a deep
familiarity and established work-flow with their image editing tool of choice, and
staying out of their way may even be the better choice in general.

To provide a minimal illustration for the effects possible with this mechanism,
figure 3.10 contains a simple top/bottom split mask, specifying the two regions on
which to apply the two integration functions in figure 3.11. This mask and function
are then applied to a 240FPS video of a foam penguin and foam rock swinging like a
pendulum while attached to the same string, resulting in figure 3.12. Note that the
penguin, integrated with the function with two wider peaks, appears in two places,
with a relatively large amount of motion blur indicating the two longer intervals of
integration, while the rock, integrated with the single very narrow peak, appears only
once, and relatively sharp-edged, corresponding to the single narrow peak — and that
it appears between the two images of the penguin though they were moving in concert.
Also note that the offsets between the peaks and the appearance of blurring in the
image provide a tell that the images of the penguin appear from light contribution
during the right-to-left traversal, while the light contribution from which the rock
is taken is from the left-to-right return trip, despite appearing “between” the two
images of the penguin.

3.10 The Octave Prototype

The proof-of-concept implementation presented in a paper “Non-Uniform Integration
of TDCI Captures” at EI2020 [78] is in the form of an Octave script included in
appendix A which can ingest a sequence of video frames to simulate continuously
sampled incident light, and apply user-specified spatial and temporal non-uniformities
to the integration of that light. This proof-of-concept implementation serves primarily
as a testbed for algorithms and representations, as well as an easy way to experiment
with the effects which can be produced, and is not tuned to be particularly fast or
high quality.

In this prototype, spatial non-uniformity is specified by an 8-bit PGM mask as
proposed above. Each region to be integrated is assigned a unique gray value, and
each gray value is mapped to a corresponding temporal gain function by a simple
table of gray value:function index correspondences. Directly encoding the index of
the gain function to be used as the gray value was rejected, as numerically adjacent
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Figure 3.10: Mask specifying two areas of the scene to integrate with different func-
tions.

Figure 3.11: Two integration functions
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Figure 3.12: Image exposed with the mask and functions from figure 3.11 and 3.10

gray vales are indistinguishable to a human observer, and storing the control point
vectors in a sparse representation adds more complexity to the prototype than simply
re-mapping the indexing.

Likewise, in this prototype, integration gain functions for temporal non-uniformity
are specified by a series of p user-supplied control points per function. These control
points are interpolated with a normal cubic spline to give the gain to be applied
at time t into a sampled interval of length tmax by evaluating the interpolation at
(t/tmax) ∗ p. This means every integration gain function is mapped to the entire
input interval, so the granularity of the function can be increased by inputting a
larger number of control points, and the position inside the sampled interval can be
accomplished by zero padding, without the addition of any other constructs. An
arbitrary number of control points can be specified to produce an approximation of
any desired integration function, and the multiple functions specified for multiple
regions are not required to contain the same number of control points.
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The approximation to incident light to be integrated is generated by extracting
successive from a video sequence, and treating each as an interval of contributed light
for 1/framerate seconds. Integration is performed by summing the contribution of
each input frame, multiplied by the average value of the mask-specified gain function
for the interval represented by the frame, and subsequently dividing this weighted
sum image by the number of frames integrated over to normalize the exposure.

This initial prototype does not attempt to interpolate between samples, as was
done in the TIK TDCI testbed [8], but a version built on top of TIK has been
developed using the algorithms demonstrated in this work. The NUTIK version
produces higher-quality output with less dependency on the frame-rate of the video
input. It also does so much more quickly.

3.11 Findings from the Octave Prototype

This proof-of-concept implementation has demonstrated the feasibility of using the
TDCI paradigm to generate virtual exposures with physically impractical exposure
parameters. This mechanism shows promise both for a variety of creative applications,
as well as potential for use in scientific applications. One simple example is using this
technique to perform HDR stacking with different exposure parameters for different
parts of the scene, all centered on the same instant in time allows a photographer to
(iteratively) develop the dynamics of an exposure without the common problems of
stitching errors from scene motion or incorrectly pre-parameterized exposure settings.
In another, the function-driven integration can be used as a more flexible alternative
to stroboscopic photography for capturing and analyzing motion, by sampling a scene
then imposing a pulse train exposure function until the desired effect is achieved.

Visualizing the effects achieved by these methods, much less their compelling
applications, is still rather difficult, since many of them are not achievable with any
physically realized camera. So far, the most effective way of visualizing the tool’s
behavior is to imagine a camera with a focal-plane shutter consisting of an extremely
transmissive, extremely fast, LCD of resolution high enough that its dot size is not
the limiting factor in the optical path. One can then think of displaying the imposed
spatial and temporal functions on this screen in the optical path and — more or less
— predict the properties of the resulting image.

This experiment was also valuable in terms of lessons learned while taking an
initial foray into the design space. One of the most immediate lessons is that the idea
of exposure intervals being continuous smooth functions represented by sophisticated
splines was a bad move. Conventional exposures time properties look like slightly
slew-limited boxcar functions; roughly 0 except during the exposure interval, which
starts and stops abruptly. As indicated by the earlier study of shutter artifacts, they
aren’t perfectly square, there blades of a mechanical shutter are neither perfectly in
the image plane nor capable of traveling infinitely quickly. This secured the idea that
the next prototype should make the common case easy; linear interpolation between
control points makes it straightforward to represent boxcar type functions,
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It also exposed some extra considerations with the concept of negative gains; while
negative gain is quite useful for subtracting some incident light for feature isolation, it
leaves a risk of negative output, something that no reasonable image format supports.

This is not a completely unprecedented problem; it’s perfectly reasonable to read
two images in code or an image editor and subtract one from the other to obtain
the difference. The matrix-math interpretation is straightforward, and most of the
image interpretation follows, but the issue of negative values is already present —
what exactly does a red value of −6 represent when the range of no-red to as-red-as-
possible is mapped to 0− 255?

This is generally treated as a normalization problem; if the output of integration
produced negative, saturated, or otherwise unpresentable values, there is a choice on
how to handle the case. A later prototype follows the behavior of most image pro-
cessing software and libraries and explicitly saturates output at 0 and the maximum
representable value in its output format as it seemed to produce the least surprising
behavior, but is not the only conceptually reasonable option. In this interpretation
our −6 red from before simply becomes 0. This saturation method is also the default
behavior in many image processing tools, including the OpenCV library [79] used in
the construction of later prototypes in this work.

Other options include treating negative values in one color channel as additions
to its compliment(s), perhaps scaled by some factor, which is somewhat analogous to
color perception models. In this scheme, our −6 red would turn into, say, +6 in each
of the blue and green channels. This scheme would be both rather computationally
inconvenient, and is extremely likely to produce surprising behavior.

Similarly, out of range values could be treated as a tone-mapping problem similar
to methods for mapping between image formats with different dynamic range; the
output image minimum value could be mapped to the lowest (most negative) value
in the integration result, the maximum result of integration to the maximum output
value, and the remaining output mapped — presumably linearly though an argument
could be made for log or other functions — between those values. In this interpre-
tation, the output mapping of our −6 red depends on the range of result values and
would be the position of −6 relative to the least and most result values. This is both
more computationally straightforward to implement and holds a better analogy to an
existing practice than in inverse-color interpretation, but was also rejected for being
likely to produce surprising results.

3.12 Camera Hacking

One of the motivations for this work was the desire for a “real” TDCI camera. Most
work on TDCI has focused on the TIK framework discussed in section 1.1, with a few
forays into building primitive capture devices, as with the CHDK prototype described
in subsection 1.1 — none of which provide a high quality, native TDCI capture device.

Having a high-quality native capture device would offer a number of benefits.
Working only on simulated data — as one could obtain from a 3D rendering package,
for example — does not provide any assurance that the model will work as desired
on natural data. Synthesizing an IMEV from video, as we have with TIK, provides
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better assurances that the model is sound with natural data, but doesn’t provide much
insight on ways to build a practical capture device, and requires multiple, awkward
post-processing steps which limit both the usability and the achievable temporal and
spatial resolution. Without a capable prototype implementation, it is difficult to
prove that the radical departures from established photographic practice required
for TDCI are justified — or practical. Designing a ground-up semiconductor design
sensor to ideally suit the TDCI model was deemed out-of-scope for the current work,
as the necessary tools and expertise were not readily available, and the potential
timelines for such an undertaking extend into decades.

To address this issue, one of the main objectives of the work documented here
was to explore the internal construction of several camera devices with an eye toward
constructing a top-to-bottom TDCI toolchain, which would generate exposures from
IMEVs captured directly by a modified prosumer-grade camera. This is hacking, in
the older honorable sense of the term, exploring a system to uncover technical details
with the goal of using that understanding to improve and extend the abilities of the
system.

While building such a device turned out to be impractical due to design features
uncovered during reverse-engineering, the exploration reveals a number of interesting
insights about the way modern digital cameras are constructed, and in particular
the unforced restrictions that result from frame-oriented assumptions in the design
of cameras.

Modern digital cameras contain sophisticated computer systems, comprising a
CPU, a sensor with typically many ADC channels for readout, a relatively large
RAM, one or more storage devices, various special hardware function units such
as encoders for specific image formats, and the bussing and DMA (Direct Memory
Access) devices to move data between the parts. These cameras, therefore, function
as cameras by virtue of the software loaded into them.

A number of options for cameras which could be modified to support in-body
TDCI were explored in some depth, and each one hit a showstopping limitation.
The technical reasons and apparent motivations for those limitations is an interesting
topic in its own right, and will be discussed after the two cases.

Sony a6000

The first and most seemingly promising platform explored was a Sony Alpha mir-
rorless body. The sensors are excellent, mirrorless cameras are designed to run the
sensor more or less continuously exposed to incident light, and because Sony publishes
compliance sources for the various open-source software running in their devices [64],
we know that devices in that family run a Linux + BusyBox operating system. A
number of older Sony Mirrorless bodies also support the PlayMemories Camera Apps
[80] ecosystem for loadable software, an Android-like development environment for
limited application development of software to run in-body. The PMCA environment
is too restricted to even attempt to develop a TDCI-like capture mode in, during the
same period of time this work has taken place over, is being discontinued entirely
[81].
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However, a series of hackers have investigated the firmware update format and
PlayMemories API which lead to possibilities to run unrestricted user code in-body.
The first of these project was NEX-HACK [82], a project to reverse engineer the Sony
Alpha firmware, which resulted in a large amount of approximate documentation, and
a tool to unpack, repack, and forge signatures on user-modified firmware updates for
Sony Alpha cameras. This initial firmware repacking tool was superseded fwtool.py
by ma1co [83], a more complete and polished tool for similar manipulation.

Ma1co also worked from the reverse-engineered documentation to generate a de-
velopment environment called OpenMemories [84], to enable the development and
loading of PlayMemories programs outside of Sony’s tools and approval process. One
of the reference applications is [85], a suite of tools for hackers to play with the cam-
era, which includes some , and critically, a telnet server allowing a user to connect
over WiFi to a root shell and inspect the state of the live system.

Given this access, an exploration of a specific test device, a Sony α6000 (aka ILCE-
6000) revealed a number of interesting details, the first of which is that it really is
a fairly standard embedded Linux system internally: uname returns Linux localhost
3.0.27_nl-rt106 #1 SMP PREEMPT RT Thu Feb 18 09:45:24 JST 2016 armv7l unknown, show-
ing the system is based on a customized 3.0 series Linux kernel with Real Time ex-
tensions, and basic POSIX interfaces are supplied by a BusyBox binary, as expected
from the compliance sources. Exploration with standard Unix utilities reveals 200MB
of main memory (there are likely also inaccessible buffers internal to the image cap-
ture system), and a four core ARM V7l processor. Inspecting the process table with
ps shows a Zygote process — the same process manager used by Google’s Android
operating system, consistent with the PlayMemories interfaces resembling Android.
Checking loaded kernel modules with lsmod shows a large number of expected main-
line features like mmcio and nand storage interfaces, an 802.11 wireless stack based
on the cfg80211 interface featuring an ath6kl chipset attached via sdio, modules to
support the built in HDMI with CEC port, and that the kernel is tainted with some
proprietary modules. The set of proprietary modules is quite extensive, and includes a
set of modules prefixed with the string “osal” (osal_utm, osal_uipc, osal_ulogio) which
are not publicly documented but the names suggest an operating system abstraction
layer to ease porting of some software components, maybe from another RTOS, and a
set of modules dmac (speculatively, the interface to a programmable dma controller),
sircs (whose name strongly suggests it implements a version of the Sony IR Remote
Protocol [86] as a bespoke module rather than via the open source LIRC interfaces),
a pair of modules lld and ldec (possibly “load” and “decode”). There is also an
module liro which is a dependency for a number of the other proprietary modules,
which spawns over a hundred kernel threads visible with ps.

Going a level deeper, pointing basic binary inspection tools like objdump, strings,
and binwalk at some of the proprietary modules — whose interfaces must be at least
moderately exposed to allow communication through the kernel module interface
boundary — reveals a number of interesting (but not helpful) details. The ideal
finding would have been a set of descriptively-named functions to control the sensor
readout, but One major observation from comparing the stubs, there is an enormous
amount of communication among liro and various osal modules, as they each make
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$binwalk liro.ko

DECIMAL HEXADECIMAL DESCRIPTION
---------------------------------------------------------------------

0 0x0 ELF , 32- bit LSB relocatable , ARM ,
version 1 (SYSV)

35960 0x8C78 ESP Image (ESP32): segment count: 2,
flash mode: QUIO , flash speed: 40MHz , flash size: 1MB , entry
address : 0x0

36191 0x8D5F mcrypt 2.2 encrypted data , algorithm :
blowfish -448 , mode: CBC , keymode : 8bit

57094 0xDF06 JBOOT STAG header , image id: 0,
timestamp 0x391C0000 , image size: 725352448 bytes , image JBOOT
checksum : 0x0 , header JBOOT checksum : 0x7C1C

Figure 3.13: Binwalk results for the liro.ko module on an a6000

large numbers of calls to functions exposed by the others. This observation does
not bode well static analysis. Another observation is that the liro module appears
to embed a partially-encrypted firmware image for a separate computer within the
camera; there is a boot header, a small un-encrypted binary, and an encrypted blob,
as shown in figure 3.13. This implies that, in addition to many intercommunicating
blackbox parts running on the main Linux system, there is a secondary attached
processor involved in the device specific low-level functions.

Unfortunately, despite being easy to inspect up to this point, the conclusion from
that inspection is that the interface to the sensor and image-handling pipeline are a
set of black-box, undocumented, proprietary, binary kernel modules interacting with
bespoke hardware and each other.

Reverse engineering those interfaces would be a high-risk project on the same scale
as the intended product of this work, have limited reach since no models released after
2017 support PlayMemories, and would be necessary to make an in-camera TDCI
implementation superior to the fall-back position of reprocessing captures externally,
so this line of inquiry was largely dropped.

Canon

Canon’s entire product line shares a number of significant architectural similarities.
The native software is built on a Canon developed RTOS (Real Time Operating
System referred to as “DryOS” [87] with various computer platform features and
camera-specific functionality implemented on top. DryOS appears to implement the
µITRON RTOS kernel specification, and also exposes some POSIX and DOS-like
interfaces — for example, when configured to boot from an external storage device,
it attempts to launch a file named autoexec.bin, a fact which is very important
when attempting to load you own code on a camera. DryOS has been used across
the Canon line since around 2007. The CHDK (Canon Hack Development Kit) [63]
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project targeting Canon’s fixed-lens cameras is based around reverse engineering of
Canon’s interfaces, though CHDK generally limits itself to calling Canon functions.

I have been involved in a number of prior projects implemented by reprogram-
ming Canon compact cameras using the CHDK [63] framework, including a number
of multi-camera array designs [88], the ISO-invariance project [2] discussed in section
3.1, providing support for a project which developed a CHDK-based photoplethys-
mography system [89], and other applications. As described among the earlier work
in subsection 1.1, Canon compacts hacked with CHDK were the platform for an
early, primitive in-camera TDCI product [10]. Canon’s prosumer EOS cameras with
interchangeable lenses are (generally) not supported by the CHDK project.

Magic Lantern

However, a sister project, Magic Lantern [90] has developed around Canon EOS
bodies, and provides even deeper hooks into the camera. Though the sensors and
on-board computational resources are not quite as impressive as those in the Sony
mirrorless bodies, this experience makes the Canon EOS prosumer cameras an at-
tractive potential target. For the same designed-for-continuous-exposure reasons as
the Sony body selection, the most promising of the Canon options are the mirrorless
bodies, so the the exploration on this front took place on a Canon EOS M body.
ML focuses on higher-end interchangeable-lens cameras, and directly manipulates
hardware configuration registers. In fact, though they are independent projects with
entirely separate code bases, Magic Lantern originally derives from the reverse engi-
neered documentation of the CHDK project, and they continue to share information.
Magic Lantern operates as a program that runs along side the vendor software; the
only modification made to the original system is setting the BOOTDISK flag in the
onboard Flash, so the camera will attempt to load code from autoexec.bin in the
root of the CF or SD card.

The Magic Lantern project [90] is a community developed, Open Source (GPL
Licensed) project which has developed a development framework and extensive collec-
tion of software which is loaded into the camera by the aforementioned process to load
user code from attached storage. The Magic Lantern community is chiefly focused
on adding video recording features and capabilities to available cameras. Specifically,
the project was initiated by Trammell Hudson in 2009 to add extended video features
to the 5D Mark II, and management of the project transitioned to A1ex in late 2010.
As the understanding of the camera internals, set of supported cameras, and com-
munity expanded, it has also extended camera capabilities for general shooting like
focus peaking, zebra highlights, and live histograms, added useful shooting modes
like intervalometer, motion detect, and automatic exposure bracketing, and a wide
variety of other features. Magic Lantern also provides a set of sophisticated devel-
oper tools for inspecting camera behavior, and several methods to run custom code
on the camera including a scripting interface in the Lua programming language, and
a module system to load custom compiled code.

Magic Lantern is academically interesting for several reasons. The first source of
academic interest in Magic Lantern is quite similar to the main ML community inter-
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Figure 3.14: Process table of Canon native processes

est; the possibility of modifying a (relatively) capable commercial camera to behave
in new ways to construct research prototypes. Because of the exposed internal mem-
ory structures and full programming environment, the functional units of the camera
can be freely reconfigured up to the limits of the reverse-engineered understanding
and/or capabilities of the hardware.

A second interest for research applications is the sophisticated scripting interface
exposed by Magic Lantern. The aforementioned Lua scripting and loadable compiled
module interfaces allow researchers to both arrange programmatic capture to use
the camera as an apparatus for experiments, and also programmatically operate the
camera to study its properties. Simple applications of custom code may include pro-
grammed timelapses, motion detection, exposure stacking for focus or dynamic range,
etc. but as it is a complete programming environment, the possible functionality is
limited only by the resources present in the device.

Another other major academic interest for MagicLantern is the insight it provides
into the internal design of a (relatively) modern camera system. Camera manu-
facturers do not generally intentionally provide low-level access to the camera or
its’ embedded computer system, or even document its features, over concerns about
licensing and competition. The reverse engineering efforts required to create commu-
nity modifications like Magic Lantern expose that information. Close knowledge of
the workings of widely available camera systems allow researchers and photographers
alike to reason about both the resulting images and the potential capabilities of a
camera in ways that a black-box treatment does not, even if they are not aiming to
expand or alter the functionality.

The ML software also allows an enormous degree of live instrumentation into the
running camera. For example, a built-in feature allows one to view the memory map
and utilization, the process tables of both ML and Canon’s native software, as in
figure 3.14, and a wide variety of other logging and monitoring, several of which are
applied later in this work.

In the specific case of the EOS M used as an example in this work, the embedded
computer is a Canon DIGIC5 chipset. A rough diagram of the relevant architecture
is shown in figure 3.15. On the computer front, two processor cores are ARM5TE
32-bit processors, and total RAM is approximately 256MB. The “Image Preprocess”
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Figure 3.15: Rough layout of DIGIC 5 SoC

Figure 3.16: The packed layout of Canon 14-bit RAW encoding

and “JPCORE” blocks represent memory-mapped fixed-function hardware for RAW
processing and JPEG encoding/decoding (names derived from firmware strings), the
SDCON/SD Card blocks represent the interface to the SD card, and the EDMAC
is a sophisticated DMA engine which will be discussed in its own section below.
Some devices — such as the onboard FlashROM that contains the built-in software,
and the various IO devices for reading buttons, blinking LEDs, and interfacing lens
mechanics are not included in this diagram, though they are also memory-mapped
devices. Strings internal to the firmware refer to those IO devices as the “MPU” and
“LPU” for the medium and low speed devices, respectively.

Another relevant detail of the low-level memory behavior of Canon cameras is
that the native RAW pixel format for 14- bit Canon cameras is packed in a somewhat
convoluted way, shown in figure 3.16. This means efficient processing of the native
format involves working on 224-bit (least common multiple of 14 and 32) blocks,
necessitating some interesting bit-twiddling and/or specific hardware support, some
of which is accomplished by the aforementioned Image Pre-processing hardware, but
much of which is managed by the EDMAC discussed in the following section.
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Figure 3.17: First screen of EDMAC live monitoring

EDMAC

One of the major accomplishments of the ML project has been the reverse engineering
of the EDMAC Engine DMA Controller, where DMA in turn means Direct Memory
Access, device present in Canon Digic SoCs. This functionality was not available for
the first several years of the project, but even a partial understanding of it has enabled
a great deal of the functionality now supported by ML.

The initial reverse engineering work was performed by a1ex in late 2016 [91].
Shortly after the initial behavior and strings were documented, it was back-matched
to a patent, [92] initially filed by Canon in 2003. The EDMAC name and much of
the related terminology in the reverse-engineered documentation is derived directly
from strings in the firmware, and later more terms were matched to the patent, so
unlike many systems whose public understanding is based on reverse engineering,
the terminology more-or-less lines up between Canon published documentation and
public reverse engineering.

The EDMAC is a sophisticated point-to-point data transfer engine, which can be
programmed to move data not only between memory regions, but also to and from
various hardware devices. For example, on many camera models EDMAC channel 0
is connected to the raw read-out of the sensor [93], while channel 3 is connected to a
hardware JPEG encoder/decoder.

The ML project now contains a loadable module which contains a great deal of live
and logging instrumentation for the running EDMAC; it can provide a live view of
current EDMAC activity as in figure 3.17, logging at regular intervals to allow study
of EDMAC activity during specific operations, and automatically identify unused
EDMAC channels which can potentially be repurposed.

The specification of the memory regions to read or write from in the EDMAC is
also quite sophisticated; it supports x and y block size, stride, count, and offset argu-
ments, special sizes for last blocks in sequences, and it supports these specifications
for both the source and the destination region, allowing it to transfer and transform
memory regions of complicated shape and size with minimal CPU involvement. A
variety of useful camera behaviors — like cropped sensor readout — are performed
using this mechanism. The EDMAC DMA transfer behavior can be described in C as
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for (int jn = 0; jn <= yn; jn ++)
{

int y = (jn < yn) ? ya : yb;
int off2 = (jn < yn) ? off2a : off2b;
for (int in = 0; in <= xn; in ++)
{

int x = (in < xn) ? xa : xb;
int off1 = (in < xn) ? off1a : off1b;
int off23 = (in < xn) ? off2 : off3;
for (int j = 0; j <= y; j++)
{

int off = (j < y) ? off1 : off23;
cpu_physical_memory_write (dst , src , x);
src += x;
dst += x + off;

}
}

}

Figure 3.18: EDMAC DMA Transfer Behavior

shown in figure 3.18, taken directly from the QEMU-based development tools built
by the ML project.

Visually, this produces access patterns like those in figure 3.19 illustrating an
access pattern with xn = 3, yn = 2, xb 6= xa, yb 6= ya, and differing positive values
for off1a and off1b which affect the stride in the X direction. Negative offsets are
also legal; it would cause the tiles to overlap rather than skip.

Figure 3.19: EDMAC Memory Layout, with Offsets

Magic Lantern Video

Another relevant accomplishment of the Magic Lantern project has been the creation
of the Magic Lantern Video (MLV) format and associated tooling. The MLV for-
mat is, essentially, a container for sequences of raw frame data read directly from
the sensor, as well as standardized ways of writing out supporting metadata, and
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optionally synchronized audio blocks. The format is specified as a roughly 200-line
LGPL licensed header mlv_structure.h.

The initial “RAWv1.0” design was chiefly experimental. The more widely used
specification, implemented by the MLV_Rec and MLV_Lite modules and all the major
post-processing tooling is considered internally to be “RAWv2.0.” Later develop-
ments have not altered the on-disc format, but have focused on optimizing the imple-
mentation, maximizing utilization of the camera hardware to extract as much data
as possible within the available sensor, memory, and (critically) storage bandwidth.
Most camera-side development has been focused on the MLV_Lite module since it was
forked by David Milligan around 2016 [94].

On the EOS M used for testing, the SD bandwidth has an empirical limit of
around 60MB/s, which means — best case — full 14-bit RAW MLVs can be captured
for longer than the handful of seconds it takes to fill the camera’s internal buffers at a
resolution of roughly 1728x692 at 30FPS, and then only if one finds an SD card that
happens to sustain the maximum observed speed. This resolution is not particularly
impressive by modern standards, but a 14-bit RAW video from a ultra-compact body
released in 2012 is quite an accomplishment. Unfortunately, the SD standards are
not particularly uniformly implemented, so finding a card that will negotiate to the
proper mode involves either locating an exact match to a card verified to do so by
another user, or extensive trial-and-error.

The chief optimization of the on-camera MLV tooling is that it uses the EDMAC
(above) to perform all the data motion; the sensor read-out is DMA on the EDMAC.
The SD card write out is DMA on the EDMAC. The cropping is DMA on the ED-
MAC. The MLV capture tooling also works around various platform limitations, such
as the 4GB file size limit on the FAT32 format volumes used on the SD cards in
(most) cameras with integrated support for multi-file encoding.

An ecosystem of processing and conversion tools have formed around the MLV
specification. Examples include MLVApp [95], a MLV processing tool initiated by
ilia3101 (Ilia Sibiryakov), a sophisticated, open-source, community-built tool for pro-
cessing the resulting MLV files. MLVApp supports the native formats produced by
the various ML supported camera models, and allows a user to post-process and ma-
nipulate the RAW video in various desirable ways; sophisticated Demosaicing, highly
parameterized exposure analysis and manipulation for toning and look, various forms
of RAW correction for dead pixels and noise reduction, and conversion to a wide
variety of conventional output video formats. It is distributed under a GPL3 license,
and is built chiefly in C++ using the Qt toolkit. Many of its features are the result of
community members adding specific functionality they desired, and/or hooking code
from other open source developments, such as the librtprocess [96] tools derived from
the open source RAW still processing software RawTherapee.

Another approach to accessing MLV data is MLVFS [97], also initiated by David
Milligan of MLV_Lite. It mounts a MLV file as a virtual file system using the FUSE
(File System in UserSpace) facility on UNIX-like systems, which allows the individual
frames of the MLV stream to be accessed as though they area directory of DNG format
RAWs, and consumed by any software which can operate on DNGs.
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Limitations

The current list of camera models supported by Magic Lantern are the Canon 5D
Mark III, 5D Mark II , 6D , 7D, 60D, 60Da , 50D, 700D / Rebel T5i , 650D / Rebel
T4i , 600D / Rebel T3i , 550D / Rebel T2i, 500D / Rebel T1i, 1100D / Rebel T3 and
EOS M, as enumerated on the current builds page [98], with a few ports in progress.
The newest of these cameras came out in 2012-2013, as platforms after the DIGIC5+
generation have not yet been adequately reverse engineered to build a working port.

Even those cameras which are supported will have features which are not fully
exploitable. As an example of attempting to make use of a not-fully-understood
feature, the original application that lead to this work was an interest in using the
subtraction channel apparently available the EDMAC to perform on-the-fly frame
diffing, for use in ongoing research projects. It can be experimentally verified, using
the extensive introspection tools included in ML, that the EDMAC has some sort
of subtraction mechanism. This mechanism is exposed in the camera UI for “Long
Exposure Noise Reduction.”

Actually making use of the subtraction mechanism presents two issues: the setup
for two-reader one-writer EDMAC operations — like subtract — is not publicly doc-
umented, and the location of the subtraction engine in a particular camera is not
stubbed into the ML code.

The second problem is relatively straightforward; a camera with ML active can
log EDMAC activity at user-controlled intervals, and on the EOS M a comparison of
the logs from a series of otherwise identical exposures, with “Long Exposure Noise
Reduction” active and without reveals that EDMAC channel 20 is activated only
when the subtraction mechanism is active.

The first problem, however, proved to be beyond reasonable effort for the exper-
iment at hand. Though two-reader-one-writer EDMAC functions are visible in the
logs, the existing ML code calling EDMAC functions primarily uses it to implement
a fast memcpy(), or other one-reader-one-writer functions. When an EDMAC opera-
tion is configured, there are calls to StartEDmac(ChanN, 0); to configure a channel
for writing and StartEDmac(chanN, 2); to configure a channel for reading. This
leads to the natural conclusion that calling StartEDmac(ChanN, 1); might plumb
a second reader, but making calls of that form doesn’t appear to do anything other
than hang the camera.

Many of the findings in this section were were presented at Electronic Imgaging
2024 as “Magic Lantern as a Platform for Digital Photography Research” [99], as
they are likely to be independently useful for imaging researchers.

Magic Lantern for TDCI

There is a tradeoff in this project between the desire to perform the TDCI encoding
as close to the sensor as possible, in order to maximize the number TDCI’s attractive
features which can be driectly demonstrated, and the extra development challenges
as — developing software on a conventional computer over documented interfaces
is much easier than working in-camera where computational resources (CPU cycles,
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RAM, storage bandwidth) are scarce, interfaces are poorly or un- documeted With
this in mind, several approaches to leveraging the access afforded to a prosumer
camera by the Magic Lantern project to create TDCI tooling were considered, guiding
which details of the Magic Lantern ecosystem were explored in depth.

First and most potentially compelling was building a TDCI capture mechanism
by directly in-body by manipulating the EDMAC engine. The attention above to the
APIs for sophisticated patterned readout and two-reader-one-writer operations in
the EDMAC was in the service of generating a TDCI stream. While the computer in
the EOS M is dramatically too slow and memory starved directly maintain a TDCI
scene model, leveraging the apparently-present memory region subtraction feature
inside the EDMAC to execute on-the-fly frame differencing looked like an avenue
to approach in-body TDCI. Because the mlvlite code successfully maintains several
frames in memory, stealing a few of those frames for manipulation appears potentially
feasible. These memory regions could then be used to maintain a current expected
value frame, and series of successive differences between the expected and most recent
frame, and that diff and the prior diff, to produce an approximation of the discrete
time second-derivative for use in a TDCI model. This case is extremely ambitious on
both memory use and arithmetic intensity, which gave it the additional downside of
likely requiring a small crop area and slow sample rate.

As a fallback, writing out the diff frames rather than the raw data should allow
very simple compression schemes — such as run-length encoding, to dramatically
improve the speed with which scene data can be written out by eliminating redun-
dancy. This becomes even more effective if the diffs are thresholded based on a noise
model of the camera to eliminate changes below significance - the notion of analyti-
cally distinguishing scene change from capture noise appears repeatedly in the larger
body of TDCI work. This claim is based on the same scene constancy assumptions
that underlie most video compression and TDCI bandwidth claims — the differences
of adjacent frames should be small compared to the total scene content. Because
raw video capture on the target camera is deeply SD write speed limited, this would
make an excellent demonstration of the possibility and value of the redundant-data-
stripping features of TDCI style capture. However, since the operation of two reader
one writer EDMAC operations has proven elusive, and it is even unclear if the sub-
traction mechanism is truly general or specifically optimized for the sparse case of
dead pixel elimination, further exploration along this line was not tractable.

Another possibility offered by EDMAC manipulation is manipulating the readout
pattern. Part of the TDCI premise is that more information can be obtained at the
same data-rate with non-correlated sampling. The principle is simple: regions of the
image which have recently changed at high frequency are likely to continue chang-
ing, while regions which have remained relatively constant do not require frequent
sampling. Unfortunately, being limited to rectangular regions, having limited control
over the relative timing of the memory transfer and readout circuitry, and lack of
processing power to re-integrate this data in body would make maintaining the scene
model in time to influence the sampling impossible.

Another possible avenue to leverage the Magic Lantern tooling in pursuit of a more
sophisticated TDCI implementation is to reprocess an MLV video stream generated

76



by the camera on a host computer, in the same fashion as previous experiments
with TIK. The benefits of such a setup are chiefly that minimally-processed sensor
data could be used for the creation of the IMEV, allowing for the error model to be
computed earlier in the process, and subsequently potentially to leverage temporal
information in other processing steps.

However, the experimental limit on the EOS M under test of RAW video at
1728x692 at 30FPS is not compelling. The limited resolution, particularly temporal
resolution, of MLV streams makes the effort-to-reward for pursuing that avenue for
TDCI reprocessing less than promising. As a standalone experiment, the MLV con-
tainer format and reprocessing tools in MLVApp would make a reasonable platform
for exploring temporal demosaicing, but a narrow experiment on that front was not
compelling given decades of existing work on frame oriented (inter-frame) temporal
demosaicing techniques [30].

Other Platforms and Adjacent Experiments

A number of other camera devices came up in adjacent projects, and some of them
bear mentioning in the context of the larger work. Several precursor projects relied
on Canon point-and-shoot cameras programmed under the CHDK environment, as
discussed earlier when introducing the Canon programming environments 3.12 and
in discussions of various sub-projects which use them, such as the early in-camera
TDCI implementation 1.1 and parts of the IOSLess 3.1 experiments that largely
inspired the rest of this work. Unfortunately, the lack of onboard compute resources
— both CPU and RAM — on these devices, the lack of access to the sensor data and
configuration at levels below the standard Canon firmware APIs exposed by CHDK,
and the mediocre sensors do not make them suitable targets for further development.

Yet a different group of related projects were built using devices which are more
embedded development platforms with small image sensors attached, rather than
dedicated camera systems. Most prominently the AI-Thinker ESP32Cam product
[100]. This board combines an ESP32 microcontrolller development system, and an
Omnivisioin ov2640 camera module. The camera captures up to 2MP (1632x1232)
color images at up to 15FPS, and is connected over the SCCB bus allowing a great
degree of low-level control. The ESP32 module provides a dual core 32Bit Xtensa
LX7 processor clocked at around 240MHz — a relatively capable processor among
the camera devices explored — but only 520kb of SRAM and 8MB of PSRAM which
is extraordinarily restrictive in an imaging device. It also provides a capable wireless
stack, and, perhaps most importantly, a vendor-supported development environment
intentionally design designed for user reprogramming, unlike the hostile development
environments afforded by nearly other every device in the space.

One project involved a much slower scene-constancy and non-uniform sampling
based incremental imaging device called Lafodis160, described in “An Ultra-Low-Cost
Large-Format Wireless IoT Camera” [101]. This project essentially constructs a 2D
polar robot, shown in figure 3.20 that can locate the sensor of an ESP32 anywhere
within the image circle of a large-format lens, allowing one to (extremely slowly)
programmatically sample any or all of the 160mm diameter image circle projected by
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Figure 3.20: The LAFODIS160 polar slow-scan camera

Figure 3.21: An in-progress full-coverage scan for LAFODIS160
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the lens, by physically placing the ESP32-CAM’s sensor at the location — sampling
a square 1.534mm on a side into 1600x1200 pixels of input at a time. My work on the
LAFODIS touched on the electronics and motion system, but owing to pandemic-era
difficulties in collaborating on hardware, was largely in generating control software
to plan and visualize motion patterns; the relation to the larger body largely being
that LAFODIS allows (and requires) the image to be constructed by a series of
potentially-uncorrelated samples of sections of the scene - the output of a script which
generates both a visualization of the sensor pattern (blue square per exposure) and
the commands for the motion system is shown in the midst of a naive full-coverage
incremental sweep in figure 3.21. This bears significant commonality to one of the
arguments for non-unifom capture behavior; that exposure parameters can be set
appropriately for the area of the scene, and areas of the scene with a history of faster-
changing content to be recorded more frequently as a way to reduce data rate while
maintaining a relatively sound scene model.

Much of the ESP32-CAM work was in collaboration with a series of undergraduate
researchers, which resulted in, among other products, a publication “ESP32-CAM as
a programmable camera research platform” [102].

Unfortunately, restrictions like the limited memory and slow low-resolution sensor
make the ESP32-CAM module entirely unsuitable for anything to do with implement-
ing TDCI or other decoupled capture and integration imaging systems, but they do
enable a wide variety of interesting experimentation on camera systems.

3.13 NUTIK

Based on the relative promise of the early non-uniform model and the greater-than-
anticipated distance to an end-to-end testbed, the next research objective turned
to integrating the lessons from the Octave-based non-uniform integration prototype
discussed in section 3.10 into the TIK tooling discussed in section 1.1. This effort is
an opportunity to refine ideas developed, improve both the quality and performance
of the synthesis process, and generally offer a closer approximation to the proposed
functionality.

To this end, a more sophisticated prototype of a non-uniform exposure system
was constructed: Non-Uniform TIK (NUTIK). This version was constructed by first
significantly updating, and then extending, TIK. The updates, mainly in 2022, cen-
tered on converting TIK to use the OpenCV library for image input and output;
however, there were also a number of bug fixes applied. The extensions added sup-
port for reading and applying functions and masks to enable non-uniform integration
for rendered images.

NUTIK adds command line arguments specifying masks to separate regions for
different integration functions, function specification files to provide lists of integra-
tion functions mapped to the mask values. A mask file can be specified to nutik with
the command line option -mMaskFile.pgm and Function files are specified to nutik
with the command line option -kFnFile.fn, in edits to the front-end code shown in
appendix B.4.
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A mask file is an 8-bit PGM image (as PGM reading has been deferred to libraries,
ASCII encoded P2 or a binary encoded P5 are both accepted). By associating gray
level with a mask, a single PGM image can specify up to 256 non-overlapping regions,
the union of which is the entire image. Each mask is associated with a different
exposure processing function.

This mask must be of of the same spatial resolution as the IMEV, and thus also
of the image to rendered, so that each site has a clearly defined gain. The mask
can be created by drawing an image with the same spatial resolution as an exposed
frame in a conventional image editor. Conceptually, it is difficult to reconcile mask
image construction with the fact that an IMEV is not an image. However, one
or more NUTIK-rendered frames from the IMEV can be used to to isolate desired
correctly exposed features. In general, this is a very powerful way to apply existing
image-based analysis to IMEV streams. For example, even image-oriented artificial
intelligence methods can be applied to help select regions or objects — as is done in
subsection 3.13. Whatever method is used to identify which pixels belong to each
mask, the PGM mask image has all pixels belonging to a particular selection assigned
the same gray level.

Compared to the Octave prototype, NUTIK uses a different scheme for represent-
ing functions and a different syntax for encoding them. Experimentation with the
original Octave prototype revealed that, for most purposes, the functions used do not
require smooth curves. The simplest, and quite common, case is camera-like expo-
sures specified by boxcar functions whose length in X is the duration of the exposure
and height in Y is the gain. The decision to use sophisticated interpolation through
a series of control points in the Octave version makes representing boxcar functions
difficult, as near-vertical features in higher-order functions or splines tend to produce
overshoot, undershoot, or rolled over corners. Interpolation also significantly com-
plicates the internal processing required, slowing rendering. Specifying functions as
piecewise linear makes the processing faster and handles boxcars without interpola-
tion artifacts while still allowing good approximations to arbitrary smooth functions.
If desired, a separate software tool could be developed to automatically construct
piecewise linear specifications from arbitrarily complex smooth functions.

The encoding used in NUTIK specifies one function per line, in the format:
Mnn[t0:g0],[t1:g1],...,[tn:gn] where nn is a value 0-255 for the correspond-
ing mask value, each tn is a time in nanoseconds from the start of the capture, and
each gn is a gain to be applied at that point. Lines not starting with an M are
discarded as comments.

The points must be specified in increasing order by time, such that they describe a
function. Consideration was given to sorting times in software, but early experiments
made it clear that humans are prone to making errors when the sequence is not written
in time order. For example, accidental time gaps and overlaps easily result from minor
typographical errors — with often bizzarre results — while time order specifications
make such errors more apparent. One convenience feature which was added to the
NUTIK implementation is that times before the first or after the last control point
are assumed to have the value of the first or last control point. This is again an
optimization for the common case in which there are only contributions integrated
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Digit ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’
Uint ::= Digit+
Int ::= ’-’ Uint | Uint
Float ::= Int | Int ’.’ Uint
Tuple :: = ’[’ Float ’,’ Float ’]’
Fn ::= ’M’ Int ’{’ Tuple+ ’}’
Specfile ::= Fn NEWLINE +

Figure 3.22: EBNF grammar of the language for specifying exposure functions

from relatively brief windows, surrounded by extended regions of no contribution
before and after.

An EBNF grammar for the specification format is supplied in listing 3.22.
This simple textual format is relatively easy to manually write and edit as well

as being simple to parse. It also is relatively straightforward to programmatically
generate, with an eye toward using it as an interface for potential future interaction
with higher level software.

There are two implementations of this exposure function specification file format.
One is integrated into the NUTIK codebase for generating exposures as maskgain.
[h,cpp], shown in appendices B.1 and B.2. The other is in a support tool for plotting
functions.

FnPlotter.py, listed in appendix B.5, is a relatively simple Python script which
plots all the functions specified in the file as a set of stacked graphs. This is accom-
plished by parsing exposure function specification files into a data structure compat-
ible with the MatPlotLib [103] plotting library, then generating a subplot for each
specified function. This support tool allows for easy visualization of described func-
tions in a human-readable form. In practice, this tool was found to be absolutely
necessary as a debugging aid.

Another feature considered but rejected for this prototype is the design of an inte-
grated format that would allow a single file to contain an exposure mask, the function
specifications, and perhaps even the IMEV data. The idea of an integrated format
seems appealing as an interchange format and for operator convenience, but these
components are different enough that there is little practical benefit in combining
them. Using plain text and PGM images enables easy manipulation of the files with
existing tools.

The bulk of the development in this prototype is dedicated to adjusting the ren-
dering code to follow the function specifications.

NUTIK uses the existing TIK infrastructure to render a .tik file from an input
video stream, then performs function-controlled rendering of output frames from that
.tik file. A higher the frame rate for the input video stream generally results in a
more precise the temporal resolution for the IMEV. This is a command-line conver-
sion tool, called as ./tik Clipname.mp4 ClipName.tik to generate a TIK encoded
stream ClipName.tik from an input video in any of a wide variety of OpenCV-
supported video formats. For metadata inconsistency reasons, the frame-rate and
shutter angle of the input can be explicitly specified, as in ./tik -f120 -a180 Clip-
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Figure 3.23: NUTIK Data Model

Name.mp4 ClipName.tik, specifying a frame-rate of 120fps (-f120) and a shutter
angle of 180◦ (-f180).

The tik tool is then called again with exposure parameters to generate a frame,
eg. ./tik -mMask.pgm -kFnFile.fn ClipName.tik. -mMask.pgm designates a mask file as
described above to spatially map exposure functions, and -kFnFile.fn designates
an exposure function specification file to temporally map exposure behavior. If the
-m and -k options are supplied, NUTIK defaults to only integrating from the input
stream for the interval defined by the control point before and after the first non-zero
control point in any function in the supplied exposure function spec file.

During this non-uniform integration step, the TIK rendering mechanism imple-
mented in render.cpp, shown in appendix B.3 adds a number of calls to functions
in maskgain. [h,cpp] to determine the appropriate weight to be applied to each
output site from the input samples encoded in the tik file.

A TIK-format IMEV consists of change records for each pixel. Although different
pixels do not necessarily have their values change at the same time, for any given
pixel, there is a sequence of change records that effectively defines the times at which
that pixel’s value changed in the scene. Similarly, a piecewise linear integration func-
tion implies a sequence of points in time where the integration weighting changes.
Any time at which either a change record or a linear integration segment endpoint
occurs thus defines an edge at which the weighted value changes. The computation
of an output pixel’s value is thus a summation over intervals between edges contained
within the duration of the integration function. This summation is done using double
arithmetic, to ensure sufficient accuracy after normalization. The normalization to
produce final pixel values simply divides the sum by the total duration of the integra-
tion function having a non-zero weight. Thanks to masking, there may be as many
as 256 different integration functions being applied to different subsets of the pixels.

A diagram of this data model is shown in figure 3.23.
Because non-uniform exposure is not a concept to which a great deal of existing

intuition applies, designing input functions and anticipating results is challenging.
A great deal of diagnostic output, (enabled with the pre-processor directive #define
CHATTY is present in the non-uniform exposure code to inspect the behavior and trace
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the exposure at a specified site in the output frame. This extra output is largely to
verify that surprising results are the result of intended behavior rather than any sort
of software malfunction.

Through these computations, NUTIK can, with extreme flexibility, expose a frame
with up to 256 spatial regions and temporally with a function specified in 256 control
points per region from an input scene model captured with a conventional camera.
Admittedly, nearly all aspects of the user interface to NUTIK are not particularly
intuitive nor easy to use, but this is a reasonable target for a system providing a
user-friendly interface. NUTIK execution time for rendering an image is generally
measured in seconds and scales with the resolution of the image and the duration
of the live interval. Typical performance would be around 6 seconds to render a
640 × 480 image covering a few tens of input samples. However, NUTIK does not
currently use any parallel execution, and most of the algorithms and data structures
are amenable to massively-parallel execution.

Samples from NUTIK

With the NUTIK tool in hand, we present a number of examples to illustrate both the
functionality of the tooling and new abilities presented by the post-capture synthesis
of images using manipulable integration functions.

Shared Center for Sharp Margins

Consider photographing a dance performance. The subject of the photograph is a
dancer on a stage doing a solo, with other dancers still moving in minor roles on stage
behind them. The subject is spot-lit, and the rest of the stage is relatively dark. This
situation is absolutely pathological for existing photographic practices.

Taking a short-interval, moderate-gain image to properly expose the soloist and
get a sharp image with little motion blur/artifact, the background will be irrecoverably
dark and likely noisy. Even if you’re willing to digitally manipulate in post, some
areas in the background will have received an amount of light below the noise level of
the sensor, so no real detail can be recovered. Taking a longer-interval exposure to get
detail in the background is problematic because the dancers are all moving and will
blur. Taking a higher-gain exposure to get detail in the background is problematic
because the soloist will be irrecoverably blown out. In many circumstances it’s now
possible to “cheat” with burst shooting and stacking — but the moving figures will
create artifacts when composited, because the center time of the different frames will
be non-overlapping. The proposed non-uniform integration method suggests sampling
the scene for a period around the desired image, then computationally integrating
different areas independently with different time and gain to allow features. Because
the intervals are set computationally after the fact, they can overlap, preventing
edge artifacts. Each area of the image (as dictated by a user-generated map) can
be exposed optimally, rather than having to select a compromise parameter for the
whole scene or stitch from a range of pre-set guesses.
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M0 {[0:0] , [1904999999:0] , [1902000000:4] ,
[1912000000:4] , [1922000001:0] , [3000000001:0]}

M128 {[0:0] , [1899999999:0] , [1900000000:1] ,
[1960000000:1] , [1960000001:0] , [3000000001:0]}

Figure 3.24: HalfSharpFn2.fn

Figure 3.25: Visualization of HalfSharpFn2.fn

Not having the ability to host a dance recital in our lab, we substituted a brightly-
colored plush dinosaur being shaken violently in front of a machine room window.
The scene was captured using the 120FPS high speed video of a Nikon Z6 III, then
cropped to 640x480 to center the subject before tik encoding. Tik encoding via
./tik -f120 -oorange.tik OrangeDinoCropTrim.mp4, then exposure via ./tik -mHalf.pgm
-kHalfSharpFn2.fn orange.tik

The supplied exposure function specification file HalfSharpFn2.fn is shown in
figure figure 3.24, also shown graphically in figure 3.25. Note that both of these
functions are boxcars, they are overlapping, and are roughly reciprocal: one is three
times as high, and one is three times as wide. The two defined regions of the image
to be exposed with the specified functions are defined by figure 3.26.

The resulting exposed frame is shown in figure 3.27. The shorter, higher gain func-
tion produces a sharper image, as expected because there is less scene motion during
the integrated interval, and the longer, lower gain function produces a comparable
exposure, but with much more blur as the scene moved more during the integration
interval. Because the shorter interval is contained in the longer interval — something
which cannot be accomplished with a single camera bracket-and-stack scheme — the
sharp edges of the moving (dinosaur) feature of the shorter exposure are inside the
blur radius of the longer exposure.

A Negative Gain

As an example of negative gain’s utility for feature extraction, consider an exposure
rendered from the same input as the previous exposure, using only a single function
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Figure 3.26: Half Mask

Figure 3.27: Rendered Frame

which makes a positive 1/30s exposure with gain 1 surrounded by 1/60s exposure
with gain −0.5 to either side, all occurring 1.5 seconds into the sampled interval. This
exposure is described by figure 3.28, which is visualized as a graph in figure 3.29. This
single function is tagged 0, so a black frame of matching resolution is supplied as the
mask, to indicate it should be applied to the entire scene. The negative intervals to
either side of the positive interval remove the light contributions from those intervals,
magnifying the specific differences at the exposed instant from its surroundings.

This function is then exposed by calling NUTIK as follows: ./tik -m../AllZero.
pgm -k../FeatureExtraction.fn OrangeFast.tik , resulting in the “diff” frame shown in
figure 3.30. While the total subtracted interval is less than the added interval, the
gain is slightly lower, leaving a de-saturated image of the static features, but strongly
exaggerating the changed regions.

A Time-Varying Gain

As a minimally weird demonstration of a behavior which is wildly unrealizable in
conventional cameras, consider a frame in which the top and bottom halves have
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M0 {[0:0.0] ,[1500000000:0.0] , [1500000001: -0.5] ,
[1516666000: -0.5] , [1533332000:1] ,
[1566665000:1] ,[1566665001: -0.5] ,
[1583331000: -0.5] , [1583331001:0.0] ,
[3000000000:0.0]}

Figure 3.28: FeatureExtraction.fn

Figure 3.29: Visualization of FeatureExtraction.fn

Figure 3.30: Rendered Frame showing exaggerated differences
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M0 {[4000000000:0] , [4033333332:0] ,
[4033333333: -0.75] , [4099999999:2.5] ,
[4100000000:0] , [5000000000:0]}

M128 {[4000000000:0] , [4033333332:0] ,
[4033333333:2.5] , [4099999999: -0.75] ,
[4100000000:0] , [4500000000:0]}

Figure 3.31: RampFn2.fn

Figure 3.32: Visualization of RampFn2.fn

their gain ramped in opposite directions during the exposure interval. The function
in figure 3.31 describes a 2/30 second exposure starting four and one third seconds
into the interval. For the top half of the frame, gain is ramped from −0.75 to 2.5,
while the bottom half ramps from 2.5 to −0.75 over the same interval. The function is
shown graphically in figure 3.32, the split halves in figure 3.33. NUTIK is called with
./tik -m../VHalf.pgm -k../RampFn2.fn OrangeFast.tik to render the image in
figure 3.34.

This essentially describes splitting the sensed area in half and dynamically chang-
ing the ISO setting for the two halves during the period of exposure. In particular,
the difference is evident in the appearance of the dinosaur’s right foot. It is wildly
unlikely this exact behavior would ever be desired, but it serves to demonstrate the
generality of the method.

Video Resampling

Video resampling for frame rate shifting, as discussed in section 1.2, has been pre-
viously noted as a useful application of TDCI models and TIK-style tools that syn-
thesize a scene model from an input video. This set of example exposures illustrates
some advantages of adding non-uniform exposure to that formula.

Figure 3.35 shows a frame grabbed from the 960FPS input video of a lurid pink
dinosaur being shaken in front of a calibration target, used to generate the IMEV
from which the later frames are rendered, representing the 0.00104 seconds of scene
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Figure 3.33: Vertical Half Mask

Figure 3.34: Rendered Frame showing the effect of ramp functions

Figure 3.35: Frame grabbed from the input video at 0.325 seconds.

data centered at 0.325 seconds. Under common frame rate shifting methods, this
frame would be extracted and displayed as the frame for the surrounding interval.

Figure 3.36 is a virtual exposure from the IMEV, rendered from 0.3 to 0.35 seconds
with a boxcar function at gain 1, as rendered in figure 3.37. This provides a more
faithful representation of the scene content over the longer interval — observe the
motion blur appropriate to the exposure time and scene motion. This rendering is
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Figure 3.36: Virtual exposure over boxcar 0.3s to 0.35s

Figure 3.37: Exposure function used to generate figure 3.36

still a bit more sophisticated than simple interpolation over the frames in the interval,
because it is aware of the shutter angle and noise properties. Note that, unlike most of
the examples here, this is a rendering that the original TIK software could implement.

Finally, figure 3.38 shows a virtual exposure rendered over the same 0.3s to 0.35s
interval, but with a triangle function with peak gain 2 centered on 0.325s rather than
a simple boxcar. This rendition smoothly incorporates data from the entire relevant
interval, but provides sharper edges to features by emphasizing the state at the center
time, creating a frame which correctly represents the state of the scene during the
interval in question — preventing discontinuities between frames — but also preserves
sharp edges of moving features. This rendition is a unique ability of the new work
presented here; dynamically varying the gain of scene contribution over time is not a
practice common to any well-know photographic practice. The closest physical analog
to this behavior is likely a leaf shutter which admits more light during the center of
the time interval than during the temporal edges when the leaves are moving. The
leaf shutter, however, also changes the effective aperture during the exposure, which
produces significant side effects (i.e., the changing of depth of field).

The desirable effect produced by a ramped exposure method is apparent when
comparing the black squares in the background in the upper-right-hand corner of
the three frames. In the grabbed frame the squares are sharp but at the position in
the scene at exactly 0.235s. In the boxcar exposure frame, features have hard-edged
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Figure 3.38: Virtual exposure over triangle function from 0.3s to 0.35s

Figure 3.39: Exposure function used to generate figure 3.38

motion trails, producing a larger image of each square. The triangle exposure frame
provides a relatively sharp individual frame, but with a softer edge allowing moving
objects to appear to be moving in a more fluid way. This effect is also evident when
looking at the dinosaur overall; the triangle exposure seems to be simultaneously
sharper and with softer, more natural, edge blur.

A Motion Study

To provide an example of the utility of a tool such as NUTIK for representing and
studying time-varying phenomena, a scene was contrived in which a UK-branded
basketball rolls down an inclined track while being filmed at 960FPS with a Sony
RX100IV. The resulting video was then trimmed to length and converted to an IMEV
with NUTIK, ./tik -f960 -a200 -oBallRoll.tik BallRollCrop.mp4.

A common attempt to illustrate this sort of motion might consist of a multiple
exposure or stroboscopic photograph. Such an image is straightforward to generate
with NUTIK; exposing a function specifying a series of boxcars of desired width —
say 1/100 of a second — at the desired times, chosen here to be t=0s, t=0.4s, t=0.8s,
and t=1s. An appropriate function can be written as shown in figure 3.40 and plotted
in figure 3.41. The result produces is the image figure 3.42. This processing is much
easier to implement and more flexible than attempting to synchronize a shutter or
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M128 {[0:1] , [10000000:1] , [10000001:0] ,
[399999999:0] , [400000000:1] , [410000000:1] ,
[410000001:0] , [799999999:0] , [800000000:1] ,
[810000000:1] , [810000001:0] , [999999999:0] ,
[1000000000:1] , [1010000000:1] , [1010000001:0]}

Figure 3.40: BallMultiple.fn

Figure 3.41: Plot of the function generating a virtual multiple exposure image

Figure 3.42: A virtual multiple exposure of a ball accelerating down a ramp.

strobe with the motion of the ball at the time of capture. While this is a reasonable
rendition, the individual exposures do not produce particularly well-defined images
due to the background bleeding through from the other constituent exposures, and
there is not much in the way of blur to suggest motion.

The NUTIK tool can instead be used to produce much more sophisticated motion
study images which more intuitively represent the behavior of the accelerating ball,
showing its state at several sub-intervals while also correctly rendering the continuous
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Figure 3.43: A motion study of a basketball accelerating down a ramp

(a) 1/100s at 0s (b) 1/100s at 0.4s (c) 1/100s at 0.8s

(d) 1/100s at 1s

Figure 3.44: Virtual exposures rendered in the process of designing this motion study

motion blur for the entire second from the IMEV. This final image is shown in figure
3.43.

To compose this exposure, a series of exposure functions each of which exposes for
1/100 of a second — an interval not corresponding to a source frame — with weight
1 were used to generate frames from the model starting at t=0s, t=0.4s, t=0.8s, and
t=1s respectively. These functions exposed the full frame by use of a solid mask,
eg. ./tik -m1080128.pgm -kBall2.fn BallRoll.tik. These start times were adjusted
interactively; the first attempt spaced them at 0.2 second intervals, but the ball at
0.2s was found to overlap the ball at 0s, which detracted from the desired effect, so
the spacing was adjusted and re-exposed from the model until the short exposures
rendered the ball in the desired locations. This series of frames is shown in figure
3.44

Owing to the short virtual shutter speed, each of these frames produces a reason-
ably sharp rendition of the ball in the position it occupied at the time of the virtual
exposure. However, the first and last are entirely crisp as the ball was nearly still
during those intervals, while the second shows slight motion blur and the third even
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Figure 3.45: The mask used to generate the accelerating ball motion study

more for the same exposure interval. This corresponds with expectation as the ball
was accelerating down the ramp during the captured interval.

Once the four individual frames were exposed, they were loaded into an image
editor, and the area occupied by the ball in each frame was selected with standard se-
lection tools. Those selected areas were then transferred to a mask with a background
of value 0, and bucket filled with tag values of 64, 128, 196, and 255 respectively to
create BallMask.pgm shown in figure 3.45

An additional frame was exposed for the entire interval from t=0 to t=1s with
weight 1, to render a photographically-correct motion blur of the ball, with the streak
of the ball becoming increasingly less saturated as it accelerated and hence occupied
each position for less of the interval. The motion trail in this 1s exposure was deemed
“too subtle” for the desired effect, so a 1/100 second exposure after the ball had come
to rest with negative weight was added, to reduce the contribution of the static scene
content and exaggerate the moving element (the streak of the ball). After several
iterations, weight -25 was found to nicely accentuate the desired effect, resulting in
the image in figure 3.46 Note that there is a small patch of corruption due to an
un-representable negative integration result near the bottom-left-hand corner of this
frame; this will not be an issue in the final rendering as that area is masked to be
exposed with a different function.

The individual exposure functions were then combined into a single function spec-
ification, BallComposite.fn, shown in figure 3.47, a plot of which generated with
FnPlotter.py BallComposite.fn is shown in figure 3.48.

Finally, NUTIK is run one more time, as ./tik -mBallMask.pgm -kBallComposite.
fn BallRoll.tik to create the final exposure shown above in figure 3.43, rendering
a final image from the scene model which selectively composites the fading motion
trail of the exaggerated long exposure with shorter exposures from several short sub-
intervals, all of which are of time and duration chosen interactively after the time of
capture, to create the final motion study.
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Figure 3.46: A full 1s virtual exposure of a basketball accelerating down a ramp

M0 {[0:0] , [1:1] , [1000000000:1] , [1000000002: -25] ,
[1010000000: -25] , [1010000001:0]}

M64 {[0:1] , [10000000:1] , [10000001:0] ,
[1000000000:0]}

M128 {[0:0] , [399999999:0] , [400000000:1] ,
[410000000:1] , [410000001:0] , [1000000000:0]}

M196 {[0:0] , [799999999:0] , [800000000:1] ,
[810000000:1] , [810000001:0] , [1000000000:0]}

M255 {[0:0] , [999999999:0] , [1000000000:1] ,
[1010000000:1] , [1010000001:0]}

Figure 3.47: BallComposite.fn

Figure 3.48: Plot of the function specification for the motion study
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M0 {[0:0] , [600000000:0] , [800000000:2] ,
[800000001:0] , [1000000000:0]}

M64 {[0:1] , [10000000:1] , [10000001:0] ,
[1000000000:0]}

M128 {[0:0] , [399999999:0] , [400000000:1] ,
[410000000:1] , [410000001:0] , [1000000000:0]}

M196 {[0:0] , [799999999:0] , [800000000:1] ,
[810000000:1] , [810000001:0] , [1000000000:0]}

M255 {[0:0] , [999999999:0] , [1000000000:1] ,
[1010000000:1] , [1010000001:0]}

Figure 3.49: BallCompositeOneBlur.fn

Figure 3.50: Plot of functions to produce blur only leading to one ball position

Figure 3.51: Final rendered motion study with blur only leading to one position
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The authors is aware of no other tool which could directly create such an image,
and particularly not from a single camera or without direct control of the scene.
Multiple exposures from a single camera would require synchronization at the time of
capture to capture the ball at each desired time, and would not provide the motion
blur path. Additional camera(s) could be used to capture the long and short expo-
sure(s), which could then be composited in post, but that would require perspective
correction and alignment to synchronize the exposures. With complete control of the
scene lighting, a similar effect could be produced from a single long exposure with
a strobe synchronized to dramatically increase the lighting for the shorter intervals,
though adjusting the respective light levels to create such an image would likely re-
quire extended experimentation. This means such a process could not be used on a
scene where the lighting was uncontrolled, the event could not be precisely repeated
and/or measured, and the subject was sensitive to lights — all of which would be the
case if one were trying to generate such a motion study of, for example, an athlete.

To contrive an interesting derived case which is even more physically unrealiz-
able, if one wanted to specifically emphasize the motion blur as the ball approached
one specific “frozen” location, it is relatively straightforward to modify the exposure
function for the background to specifically emphasize the motion blur leading up to
one of the short exposures. In this case, the function is modified to be a ramp from
0.6s to 0.8s with maximum height 2 to fade in the motion blur leading up to the area
the ball occupies during the exposure beginning at 0.8s. This is performed with the
function spec file shown in figure 3.49, plotted in figure 3.50 resulting in the image
shown in figure 3.51.

Selective Exposure with Moving Objects

As an example of the temporal flexibility afforded by this system, a short 120FPS
video of two of the author’s cats playing with a wand toy was converted into a IMEV.

The rendered frame, shown in figure 3.52 aims to properly expose the scene and
both cats, one at the exact instant it connects with the toy, and the other when it is
facing the former with its eyes open, and despite the fact that it is in shadow.

To compose this image, frames were rendered from the IMEV at varying center
times until the desired instant where the leaping cat connected with the puff was
identified. The width of the interval around this center time was then adjusted to
produce a desired exposure for the background content.

A mask, shown in figure 3.53, was then generated by drawing over the newly
created background frame at the desired instant to isolate the areas occupied by
the cats, tagging the background with one value (0), and each of the two cats with
unique values (64 and 128) to allow the exposure on the background and each cat to
be adjusted independently. The length and gain of the functions exposing the cats was
then adjusted for intervals overlapping the interval used to expose the background,
such that each cat was independently situated and exposed as desired. The selected
functions are shown in figure 3.54; producing the desired image entailed exposing
the orange cat, tagged 64, for a shorter interval toward the end of the interval used
for the background at higher gain, to cut off head movement early in the interval,
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Figure 3.52: Rendered frame from intervals independently selected after exposure

Figure 3.53: Mask used to select regions of the frame to separately expose

Figure 3.54: Functions used to expose the different sections of the cat frame

providing sharp features at consistent overall brightness. The black cat, tagged with
128, was exposed for a longer period extended around the interval used to expose the
background to provide more motion blur.

This example was chosen to illustrate that several of those steps described are dif-
ficult or impossible with a conventional imaging process, even when each constituent
exposure is a relatively conventional boxcar function. Selecting the exact instant
and interval over which a frame will be exposed after the time of capture can only
be approximated by a conventional frame-capture process. Typically, capturing an
exact instant relies on the reflexes of the camera operator, and may be mechanically
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assisted by shooting several closely spaced frames around the time the operator trig-
gers 1.2, but that only improves the situation if the exposure is correct and one of the
captured frames happens to line up with the desired instant. The very basic TDCI
operation of selecting when the exposure interval is after the fact is unusual.

Furthermore, adjusting the exposure interval after the fact is essentially impos-
sible. Exposed frames give only the average value for the scene over the exposure
interval, so directly generating a shorter or longer interval from rendered frames —
especially from frames of similar shutter speed and spacing to the desired result —
is at best a matter of artificial blur or de-blur around moving elements rather than a
genuine change of interval, as the fine-grained temporal information has already been
lost. Next, while many stacking methods allow for mask-driven composition, getting
to change the intervals independently and after the mask is created from scene data is
not an option when stacking frames. In addition to the freedom of exposure intervals
being varied independently after the fact, this process also illustrates that the inter-
vals can be overlapping which is impossible from an image composited from captured
frames; each captured frame in a burst from the same camera must be from a sep-
arate non-overlapping interval (and shooting from multiple cameras requires setting
up and controlling multiple cameras followed by perspective correction).

Improvements for NUTIK

Quite a number of improvements to further enhance the NUTIK prototype present
themselves.

The major category is helper utilities to ease the creation of suitable masks and
exposure functions. These tasks are currently quite laborious. Exposure functions
in particular are also rather mentally taxing to design, as they represent a degree of
freedom for which there is no analog in other practices.

The addition of helper utilities to allow graphical click-and-drag creation of func-
tion specification files would improve the user experience and lower the barrier to
entry to setting up a development. Supplanting a visual tool with a library of exam-
ples to help tie functions with useful — or at least aesthetically interesting — effects
would further improve the utility of visual representations of functions.

Helpers for generating useful masks could also be constructed relying on contem-
porary imaging technology. The same foreground-isolation methods used for features
that typically carry names like “blur background” or “portrait mode” could instead
be used to generate a mask separating foreground and background features, allowing
selected foreground objects to be easily exposed differently than their surroundings.

On the programming front, the NUTIK code was developed to with the principle
of not introducing any inessential complexity to the prototype, and this carries a
variety of potential performance implications.

Determination of the weighting of each sample contribution involves a chain of
dependent memory lookups; the gain depends on the ending control point in the func-
tion, which depends on the beginning control point point in the function, which de-
pends on the mask value for the location. Dependent memory fetches are potentially
extremely slow on most computers, but the size of the data structures in question is
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such that architectural caches should largely hide the problem. Smaller less sophisti-
cated host processors as found in embedded systems tend to feature memories which
are faster relative to the processor, so these concerns would not be exaggerated in em-
bedded implementations, as onboard a camera. Adjacent output locations tend to be
exposed by the same function, so adding simple caching to the weightherebetween
and/or gainherenow may offer some low-hanging performance gains. Each of the
lookups above are also currently implemented as forward linear searches; switching
to a more efficient search algorithm is, in principle, a drop-in local change with no
inter-function implications.

Fortunately, empirically the non-uniform exposure changes add less than 2% to
the execution time of earlier TIK versions supporting only uniform exposure, making
these performance concerns not a pressing issue.

Improving the performance of the base TDCI processing in TIK should also be
relatively straightforward; like most image processing problems, rendering an output
image from input samples is embarrassingly parallel across the spatial dimensions and
color channels of the output image, and easily decoupled across time dimensions. This
means that, if someone were foolish enough to try, it should be as straightforward as
any parallelization ever is to map the loops that walk the image locations and color
channels to parallel-for type constructs which would execute efficiently in stripes or
patches across a large number of independent cores or even — as the operations for
each site or channel chiefly only differ by data — SIMD or GPU hardware.

Temporal resolution of the NUTIK tool is dependent on the maximum video
framerate supported by the device used to capture the input video, but could be
improved beyond the rate provided directly by the capture device by incorporating
the temporal super-resolution from shutter behavior techniques proposed in 2017 in
“Temporal super-resolution for time domain continuous imaging” [5].

Copyright© Paul Selegue Eberhart, 2024.
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Chapter 4 Discussion

Much of this work has been an exercise in exploring the degree to which digital cam-
eras are simulacra of film cameras. Though the super-majority of the photographic
[104] and cinematographic [105] market has shifted from film to digital sensors, stor-
age, and processing, the devices, practices, and tools have remained firmly anchored
in practices derived from film cameras. Rather than being superseded by digital
cameras designed as digital cameras, film cameras have been supplanted by digital
cameras and tools that go out of their way to simulate their film predecessors.

4.1 A Better Way To Use a Digital Camera

Crutches like the “Sunny 16 Rule” — an alliteratively convenient aphorism whose
origins appear lost to time stating that “On a sunny day set aperture to f/16 and
shutter speed to the reciprocal of the film speed for a subject in direct sunlight.” —
are effective for allowing a human to quickly estimate a reasonable exposure given
a few fixed parameters for an entire scene at time of capture, but that is not the
circumstance under which modern photography occurs.

For much of their history cameras have been increasingly automated. Photo-
electric light meters integrated into the camera body and coupled to the exposure
mechanism became common by the 1930s, with cameras like the Contaflex (1935)
and Super Kodak Six-20 (1938). These devices are simple averaged-intensity meters
with simple couplings to the operation of the camera, but allowed the operator to at
least partially defer to automation. Microprocessors appeared in consumer cameras
long before digital sensors — in the mid 1970s products like the Canon AE-1 (1976)
[106] consolidated some of the profusion analog electronic and clockwork mechanisms
for camera automation into a single IC as one of the early applications of microcon-
trollers. Within a few years, the now familiar so-called “PASM” (Program, Aperture
Priority, Shutter Priority, Manual) [107] control scheme for expressing user priorities
to a computer agent emerge with the Canon A-1 (1978) and have remained more or
less remained a constant in the “more serious” camera market segments since.

Not only are most cameras equipped with some form of integrated sensors and
computer controls which combine the sensor data with some indication of user intent
to actually drive the camera mechanism, modern digital photography almost always
has an embarrassingly powerful computer in the loop with the main sensor data which
can easily make specific, localized decisions about exposure. In particular, modern
mirrorless cameras are continuously sampling and processing the output of the sensor
-the screen or EVF (Electronic View Finder) is sampled, processed, automatically
exposure controlled stream. Furthermore, the gain of the captured image is not a
static feature. Where with photosensitive emulsion film the gain is set for the entire
scene long before the exposure when the film is loaded into the camera, in a digital
camera the gain can not only be altered on the fly, it can be altered — at least to a
degree — after the fact with no apparent loss of image quality, and in principle set
differently for different parts of the frame, though few cameras expose much control
on that front. Thus a key lesson from this work is that photographers should consider
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a different paradigm for setting exposure, aiming to expose to capture the maximum
amount of secene data rather than to capture a pleasing image, then generate the
desired integrated frame after the fact by applying digital processing to the gathered
scene data. The feature to optimize on in this paradigm is to minimize the number
of sensels which are out of range in the scene — the scene information gathered from
a sensel which is (within noise level of) saturated or (within noise level of) black is
much lower than information from a sensel which is anywhere within its range, no
matter how badly exposed.

4.2 Capture, Then Integrate

A major suggestion from this work, like previous studies into TDCI, is that there
should be a decoupling of capture and integration. In film photography, the gathering
of incident light and because the process by which the scene information is absorbed
is the same photochemical reaction that renders at least an intermediate image (a
film negative). Digital cameras are currently operated under the same regime, but
the capture and integration processes are not inherently linked.

The main challenge to separating the capture of a scene model or record of incident
light for each point in the scene is managing the data-rate. More sophisticated sensor
readout schemes with faster, more numerous ADCs to read out the sensor, and faster,
larger memories in cameras all contribute to the feasibility of such a system, but do
not solve the problem entirely. Emerging alternative read-out regimes, like most
event cameras, tend to suffer from information loss due to “swamping” in the event
of correlated motion producing events exceeding their readout bandwidth. The TDCI
method of recording second derivatives — changes to the rate of change — of incident
light, clipped by a noise-model-aware threshold is extremely promising, but still far
from credible hardware implementations. Fortunately, the specific details of how the
data-rate to support capturing a continuous scene model are independent of the idea
that that separation brings benefits.

The benefits of this separation are substantial. Recording a scene model defers
the decision about exposure parameters until after the time of capture. Many pho-
tographs are spoiled by failing to correctly estimate the correct timing, duration, and
gain for exposure under particular lighting conditions. In a simple example, trying to
photograph a young child running presents the photographer and/or their computer
agent in the camera with an array of parameters that separate a delightful image from
something unusable. A small change to exposure time separates a delightful picture
of a child running from a tragic picture of the child falling to the ground. A small
change to exposure interval or sensitivity separates clear rendering from a blown-out
or dark and grainy frame. Conventionally, all these decisions must be estimated at
least approximately correctly before the instant to be photographed.

Deferring those choices allows the photographer to not only carefully select pa-
rameters at their leisure, it allows them to virtually re-expose the same scene an
arbitrary number of times and examine the results until the desired result or results
is obtained. Furthermore, the gain and interval of integration is not constrained to
a single value for the entire frame; portions of the frame can be arbitrarily exposed
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with different times and effective sensitivity to obtain desired results which may be
out of reach of the dynamic range of the recording sensor device.

As an example a scene with a dim field and a fast-moving but more brightly
lit subject presents a problem for traditional photographic practice. This is not an
uncommon situation; for example, a moving performer under a spotlight presents
exactly this situation. ISO and exposure interval set to properly expose the subject
will not only underexpose the background, there will be visible noise in the below-
noise exposure. ISO and exposure interval set to avoid a dark, grainy background
will leave an excessively bright subject with significant motion blur.

In a decoupled, non-uniform exposure scene, instead of attempting to produce an
appropriate image on the fly, the photographer instead captures the incident light
during the desired interval. Later, they can use the record of incident light to assem-
ble — for example setting the interval of integration such that the subject is properly
exposed with the desired amount of motion blur. They can also independently deter-
mine a set of exposure parameters which will expose the background properly with
a minimum of noise. Finally, they can mask off the regions of the image and gener-
ate an exposure using the two functions for different areas, but using the records of
incident light centered on the same instant.

A similar trick can almost be performed to a degree with burst shooting, but that
doesn’t allow the intervals for the differently integrated regions to overlap in time —
a serious problem if, for example, the subject is moving.

Even stranger things are possible. The gain doesn’t have to be positive — it’s
perfectly possible to subtract the light gathered during an interval from the light gath-
ered in another. Subtraction is useful for isolating features — particularly differences
from the average of a period.

4.3 Violating Assumptions Makes Everything Harder

This work violates a number of deeply-held assumptions across a number of concepts,
and many of the challenges derive from the tendency that the more foreign something
is, the more difficult it is to integrate with existing technology. The variety and
magnitude of those violation was not clear until a deeper investigation, and a direct
discussion of some of those assumptions and how they became rooted is worth having.

The first, most obvious, and deepest violation is that the vast majority of other
imaging technologies are frame-oriented, while this work treats time (and gain) as
continuous dimensions. In the discussion of mechanical shutters and emulsion pho-
tography, it’s clear where photographers obtained that assumption: the use of APEX
shutter and film speed graduated by doubling and halving in order to make expo-
sure calculations tractable for a human operator impose a consistent, discrete scale
on both, and that assumption is deeply ingrained into professional practitioners.
Likewise, mechanical movie cameras operate on series of frames of film exposed for
consistent pre-determined intervals — the entire concept of shutter angle is premised
on a mechanical method for discretizing frame rate and exposure intervals. That
analogy constrains shutter angle to be less than 360◦, but there is no such constraint
on shutter angle in the current work.

102



Early digital photography carries over many of those assumptions simply as a
matter of practice and technique, and those assumptions were baked into software
tools for manipulation of digital images. Interestingly, digital video encoding tends
to have a continuous-time component; motion compensation is applied as a form of
compression to allow many frames to be derived from a single complete reference/key
frame by recording changes from the reference rather than complete frames, an off-
shoot of ideas about Scene Constancy and Optical Flow discussed earlier 2.4. Given
that almost all video formats operate in the optical-flow domain for storage and trans-
mission, it would be nice to edit directly in that context instead of by decompressing
a section into a frame then re-compressing.

In an even deeper, broader form, humans — at least culturally — don’t tend to
think of time as a continuous dimension. We talk about discretized time — seconds,
nanoseconds, intervals — but don’t even have language to discuss time as a continuous
phenomena the way we discuss spectra for frequency ombré for color.

4.4 Changes in Cameras

Much of the content earlier in this dissertation has been devoted to discussing changes
in camera technology, and how various assumptions have persisted despite the decline
of the technologies they were grounded in. Using the same lens, it makes sense to
look at current trends in camera design, both to see which assumptions they might
violate or reinforce, and to see how they might interact with the proposed design of
cameras that operate on non-frame-based capture and post-capture synthesis.

The Rise of MILCs

One change we are toward the end of which seems to be informed by an effort to
transition from a film-oriented to sensor-and-computer oriented camera design is
the gradual transition from Single Lens Reflex (SLR) digital cameras to Mirrorless
Interchangeable Lens Camera (MILC) designs.

The point of an SLR was to be able to compose and focus your image by directly
looking through the taking lens. Early electronic sensor designs could not provide
a reasonable quality live view, so the industry made Digital SLRs (DSLRs) that
differed from film SLRs only in that an electronic sensor was placed where the film
would have been. As sensor technology progressed, it became feasible to obtain a
usable live view, but DSLRs designs continued because the phase-detection autofocus
mechanism that evolved in film SLRs could not be implemented using the main sensor;
a mirror of some sort was needed to give a separate phase-detection sensor access to
the image projected by the lens. Eventually, methods for including phase-detection
mechanisms on the main sensor (either by masked pixels or dual pixels) removed the
last obstacle to simplifying the camera design to have a single, mirrorless, optical
path. Thus, the camera market has dramatically shifted from SLRs to MILCs [108].

Obviously, a camera capable of high-quality live view also can shoot video. Es-
pecially with MILC cameras, there has been a fusion of the still and video camera
markets. It is now expected that a high-end camera can automatically focus and
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shoot quickly and even record high-quality video. In other words, new capabilities
have been embraced, but they began as almost unplanned side-effects of sensor evo-
lution.

What has not happened is a full re-examination of why cameras are designed as
they are and what new capabilities they should aspire to have. The current work sug-
gests that frameless treatment of time as a full dimension should be a key aspirational
goal.

Upcoming Changes in Cameras

Although the frameless handling of time advocated here is an outlier, many other
research efforts and some commercial products in development also focus on more
flexible handling of temporal properties of cameras.

There are a number of exotic new camera sensor technologies that employ a non-
frame-oriented sample-then-integrate paradigm. In the preliminary research for this
work, QIS sensors were discussed as a related work to precursor TDCI designs. In
the interim, several developments have made QIS and IMEV even better suited to
each other. Experimental QIS sensors have now scaled out to a 163 megapixel active
pixel QIS sensor design [109].

QIS operates on exposure times of around 100µS to 1mS. This extremely short
exposure is because the cells have a quantum efficiency of around 70% in the visible
band, and each cell saturates in around 5000 e−, making it saturate very quickly
in bright light. Bandwidth is also problematic, even with 66 400MSPS LVDS lanes
to transfer data off-chip, the readout system in the cited design limits the sensor to
around 7.5FPS at full resolution. That is far too low a frame rate for video, let alone
for processing with a tool like NUTIK.

An IMEV model, however, has several things to offer to this line of development.
Using TDCI to replace the already sophisticated on-chip readout system could squash
redundant samples unchanged from exposure to exposure, allowing for more efficient
use of the off-chip bandwidth, and thus increase frame-rate in a frame-oriented read-
out mode. Because their readout scheme is already ramp-function driven and their
saturation intervals are short, it could also be well suited for even deeper application
of a TDCI model with an uncorrelated read out mode that natively generated an
IMEV.

The function driven integration that is the focus of this dissertation would also
allow such a sensor to simulate exposures longer than saturation limits. Integrating at
low gain would allow the rendering of long virtual exposures with characteristic visual
effects suggesting motion from combinations of the very short saturation intervals,
and doing so selectively would allow absurd linear dynamic range of hundreds of
thousands to one.

The quest for higher readout speeds in more conventional imaging sensors also fits
well with the idea of providing a native IMEV output. Using the Sony A9 III [110]
as an example, the addition of ever-faster readout schemes with more independent
ADCs and larger high-speed on-package memory are certainly advantageous to the
construction of IMEV-capture cameras. The larger arrays of more ADCs should be
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helpful in implementing TDCI-like readout schemes because more ADCs could allow
a better approximation to non-correlated readout. At this time, there is no indication
that the camera firmware would support this type of use.

For large, fast buffers, the A9 III in particular claims “1.6 seconds of 120fps pho-
tography at 14-bit Raw quality” and those are 24MP frames, implying approximately
7.5GBytes of buffer which can be filled as fast as it can be exposed and read out. This
large buffer would provide plenty of room to store the several frame-sized intermedi-
ate components of a TDCI model, avoiding many of the memory-pressure concerns
that pervaded the extensively studied cameras, and in particular the EOS M.

Another emerging feature typified by the A9 III is the addition of faster rolling
shutters or even global shutters in cameras with competitive image quality has mixed
implications for TDCI-like technology. These shutters produce image captures in
which sensels are sampled much closer to simultaneously — fully correlated sampling.
However, global shuttering prevents the sort of structured shutter estimation that
allows post-processed TDCI schemes to resolve finer time-granularity [5]. On the
other hand, global electronic shutter implies the ability to dump the entire sensor in
parallel, apparently in analog form into a second diode used exclusively as a storage
element [111]. That same hardware feature logically could enable implementation of
a TDCI-type continuous readout mode.

Of course, any improvement in capture framerate improves the quality and abil-
ities using a tool like NUTIK to reprocess video, burst still captures, or even “open
gate” full-resolution raw video captures.

Most Cameras are Phones

Although the market for dedicated cameras has not disappeared, the huge growth
market for cameras has been in cell phones — and secondarily in Internet of Things
(IOT) devices. Both those classes of devices generally have small sensors and thus
limited image quality. However, cell phones have significant compute power onboard,
and both cell phones and IoT have access to huge compute facilities as “edge com-
puting” devices.

To make these devices more effective, the market is becoming quite comfortable
with cameras that do a considerable amount of processing to render an image. Many
cell phones now support features like “portrait mode” which uses selective computa-
tionally applied blur to simulate shallower depth of field than is achievable with little
to no aperture control. Likewise, many consumer devices now synthesize their output
from several cameras. The Light L16 [112] was an exercise in taking this technol-
ogy to the illogical extreme, cramming 16 camera modules with different sensors and
small lenses into a single device, then controlling them in concert and merging the
output to allow computational alterations to zoom and exposure. Though the Light
L16 failed on the market, variations on the technology are present in most high end
cellular phones for years, typically operating on a cluster of 2-4 cameras with optics
of different focal length.

Manufacturers have even argued that there are “No Real Pictures” — as Sam-
sung’s Patrick Chomet recently claimed [113] in a press release, some time after
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Samsung was caught injecting artificial detail from training images into pictures of
the moon [114]. Thus, many user-facing cameras are no longer operating in a gen-
uinely frame-oriented mode, synthesizing the image from assembled scene data across
multiple sensors, times, and possibly just making-up probable or desirable content
from image data in the tools’ training set. Use of these methods is a large part of
why cell phones have grown such powerful computing resources. Perhaps these same
compute resources could be better applied to create and render from IMEV forms?
IMEV would provide significant advantages, including noise reduction, without the
possibility of making pretty hallucinations.

In the Hands of Users?

As quickly became apparent in the course of this research, thinking about IMEV
rendering is neither a small nor incremental change to the standard ways of thinking
about photography. Even for the examples presented in this dissertation, it was hard
to visualize the impact of various integration functions, let alone to design ones to
obtain a particular desired effect. Software tools can help with this, as demonstrated
by FnPlotter.py, but tools that facilitate use of a model do not necessarily make
people comfortable thinking about the model in the first place.

As was discussed in section 1.2, there have been a number of algorithms imple-
mented in cell phones and other imaging systems that perform some operations that
approximate portions of what IMEV processing can do. A good example would be
the multi-shot low-light modes in many cameras. This is how IMEV processing is
expected to first reach users: as an improved version of some “magical” feature al-
ready in their cameras. The motivation for cameras using IMEV is not likely to be
interest in the new model, but recognition of the fact that it can create “better”
images without hallucination.

Once the infrastructure starts to exist in consumer-level imaging systems, it is
likely that the user would initially see it only as semi-automatic controls. A crude
mock-up of such an interface is shown in figure 4.1. In that interface, the “time” slider
would control the center of the desired exposure interval to be extracted from an
IMEV. Neither control would affect the brightness, color, focus, etc.; those would be
preserved. The sharpness would implicitly control the combination of virtual shutter
speed and integration function shape. A lower sharpness would imply a longer virtual
shutter speed with a more gently ramped integration function. A higher sharpness
would approach a short-duration boxcar integration. Certainly, more sophisticated
algorithms could control the internal parameters and more controls could be presented
to the user to manipulate the integration function, to implement common types of
multiple exposure, object-selection for masking, etc.

It is plausible that we will eventually get fully-realized digital-native camera sys-
tems which operate more or less like the IMEV systems proposed here: sampling light
then computationally constructing images from the samples with adjustable timing
and gain under full user control. However, that requires a big change in perspec-
tive. Ren Ng’s refocus-after-capture plenoptic digital camera technology, alluded to
elsewhere in this document, can be considered a similarly sweeping change of perspec-
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Figure 4.1: A mockup of a limited UI for re-timing a frame from a scene model

tive. He founded a company, Lytro, to commercialize the work in his dissertation.
Despite the advantage of a century of theoretical precedent and 20 years of more
closely aligned prior work, and with $140M of Venture Capital money, the technique
still has not found wide acceptance. Two commercial products were produced, but
photographers simply were not comfortable with them, and the company eventually
failed. Unlike plenotpic cameras, the TDCI-derived decoupled IMEV capture and
integration methods discussed in this work do not inherently ask the user to accept
a loss of spatial resolution in return for the ability to repeatedly manipulate param-
eters post-capture. However, that does not imply photographers will be any more
comfortable with this approach.

Copyright© Paul Selegue Eberhart, 2024.
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Chapter 5 Conclusion

This work suggests that, by decoupling the process of capturing a scene appearance
model from rendering an output frame, a number of desirable properties and new
degrees of freedom can be introduced to the photographic process. Computationally
rendering frames from an Image Evolution (IMEV) model, as defined in the current
work, affords a photo editor the freedom to adjust the tonal properties by indepen-
dently and continuously controlling the effective time, shutter speed, and gain for
all pixel sites in a rendered frame. These adjustments are not made at the time of
capture, but after the fact from the captured model. Additionally, frames can be
rendered for a multiplicity of parameter choices from a single captured model, al-
lowing rendering of frame sequences (video) or interactive tuning of parameters to
render a single frame. These potential advantages were explored and confirmed by
constructing prototype software including NUTIK: a tool which implements the new
frame rendering process.

This work extends earlier work on Time Domain Continuous Imaging (TDCI).
The concept of TDCI is rooted in a new way to have image sensors sample scene
appearance. TDCI post-processing centered on approximating what a conventional
camera might have been able to do, but with various decisions deferred to after
capture. More precisely, TDCI processing allowed the interval from which a frame
is rendered to be selected arbitrarily after the time of capture independent of the
timing properties of the capture. The current work has extended these concepts
significantly. While earlier work presented and used various device-specific formats
to record TDCI data, the current work defines the more abstract concept of an IMEV
model not tied to any particular capture mechanism. The current work also explored
how images can be rendered from an IMEV model in ways that are not just delaying
decisions, but treating time and space as manipulable dimensions that can be used
to produce images that are unrealizable using conventional photographic processes.
Novel processing concepts defined and demonstrated in the current work include:

• The ability to have each rendered exposure represent not just any desired time
interval within the capture, but also to vary the weight of contribution within
a time interval. An example of this is shown in figures 3.31 and 3.34.

• A rendered frame need not represent a contiguous time interval, but can repre-
sent any user-selected weighted combination of the time-variant scene content
over any set of arbitrary intervals. This aspect can be considered a generaliza-
tion and extension of the concepts of multiple exposures and stacking functions.
Multiple examples of this are presented in section 3.13.

• The ability to have negative weights for contributions. This provides function-
ality similar to that of an event camera, allowing removal of scene content that
was unchanged over selected time intervals. It also allows much more general
use of temporal differencing, which is impossible to accomplish by conventional
means. Because such manipulations are an entirely new capability, the results
are difficult to anticipate. However, with NUTIK the user can explore the wide
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range of effects that can be achieved. Figures 3.28 through 3.30 demonstrate a
use of negative weights.

• Through the use of masking, the virtual exposure parameters can be applied
selectively and independently to arbitrary regions, or objects, within the scene.
It can be difficult to know a priori where an object mask should be placed, but
that problem can be solved by creating the object mask using normal “smart
selection” software applied to a rendering produced as an intermediate step.
For example, to create a sharp image of an object moving across the scene,
the region it occupied during a desired interval could be exposed with a short
virtual exposure. The rest of the scene can be exposed over a longer, potentially
overlapping, interval to capture motion blur and/or dark details. An extended
example of options afforded along these lines are illustrated by figures 3.40
through 3.51.

The most convenient representation of a time-varying scene model is not a se-
quence of frames, but an IMEV data structure that exclusively encodes records de-
scribing when and how the expected value for each pixel changes. As was discovered in
previous work developing TDCI, recognizing when the expected value has significantly
changed requires a statistical understanding of the noise in pixel value measurements.
The current work leverages the same computations used in TDCI to determine and
apply these noise statistics.

It is clear that commodity digital cameras are generally designed to behave super-
ficially like simulations of film cameras. However, the assumptions associated with
that simulation were found to permeate the internal operation of the cameras exam-
ined in this research. The frame orientation is surprisingly evident in every layer of
processing from sensor readout through image storage. Despite this, it is possible
within that framework to somewhat awkwardly implement IMEV capture. The work
reported here strongly suggests that at least the Sony A6000 and Canon EOS M mir-
rorless cameras can be reprogrammed for IMEV capture without adding or modifying
hardware. The main issues encountered in the commodity cameras studied were:

1. Although random access readout of sensels on a CMOS sensor is theoretically
possible, the particular sensors and controllers used support only readout of a
single, potentially strided, rectangular ROI (region of interest) between sensor
resets. Thus, more data must be read from than sensor than is theoretically
necessary for IMEV capture.

2. To detect which sensel values have changed from their predicted values, the
entire sensor must be read out. The cameras studied did not have sufficient
main memory working space to perform the conversion to an IMEV form at
full resolution. This situation has steadily improved in subsequent camera gen-
erations; the available main memory has grown faster than the size of a full
captured frame.

3. Even if there was sufficient memory space, the processors in the cameras studied
are not fast enough to maintain a high sample rate at full resolution. The Sony
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A6000 has a quad-core ARM7 and the Canon EOS M has a dual-core ARM5.
Neither is fast enough to perform even conventional frame capture processing
without the assistance of special-purpose hardware for JPEG compression, etc.
It is possible that some of that hardware could be adapted or enhanced to speed
up IMEV capture processing; our study was not able to reverse-engineer a way
for software to make effective use of the existing function units.

It seems that the vast majority of implementation choices were made the simula-
tion of film-like behavior was found to be far more than skin deep. After several years
exploring how the internals of these cameras could be repurposed to more directly
produce IMEV recordings, no clear path was found. Too many camera hardware
and software interfaces are tuned to work on frames, and the excess computational
capacity in the cameras was not sufficient to successfully layer IMEV capture on top
of that infrastructure. The recent emphasis on the fusion of video and still photogra-
phy, combined with the ever-reducing costs of putting additional computing resources
in the camera, should make IMEV capture easier in future systems, as discussed in
Section 4.4. Additionally, one can hope that the abilities associated with IMEV pro-
cessing, as identified here, will inspire the introduction of hooks making it easier to
experiment with IMEV capture in future camera models.

5.1 Future Work

As much as conventional cameras may be evolving toward designs that can effectively
simulate IMEV capture, the ideal IMEV capture device would be a TDCI camera.
These have proven difficult to develop, but the current work should make the devel-
opment effort easier to justify.

In a completely different direction than this work took, observations made while
refining the TDCI model suggest a possible mathematical formalization of the mech-
anism. An IMEV model should only emit a record when the predicted value of a
sensel has changed. The simplest possible prediction would be that a sensel’s value
is constant, in which case the IMEV emits records corresponding to the first deriva-
tive of the function which is that sensel’s value over time. Thus far, all the TIK file
formats effectively encode first derivatives. Greater compression should be attain-
able by using a more sophisticated prediction. For example, if the sensel’s rate of
change is modeled as a simple slope, an IMEV record could be emitted only when
sampling of the sensel indicates a change to the slope, effectively recording the sec-
ond derivative. IMEV coding is fundamentally a one-dimensional signal compression
problem, and a wide range of compression techniques that have been applied to audio
channels might be applicable. Of course, any changes need to be measured taking a
noise model into account. The empirically-derived probability density function maps
used in this work — and in earlier TDCI work — appear to be effective and robust
enough to be used for determining when statistical changes are significant even for
more advanced compression schemes.

For the NUTIK prototype and its related tooling, there are a number of obvious
next steps.
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• The NUTIK code base is full of unutilized parallelism. All of the per-pixel and
per-color-channel operations in the rendering loop in particular are pleasantly
parallel. Utilizing multiple cores or even a GPU to significantly speed processing
could probably be achieved with the addition of a relatively small number of
OpenMP directives.

• NUTIK contains a number of places where it performs series of linear searches
of relatively small data structures to compute gains. Fancier data structures
would speed-up these searches if the integration functions being applied were
exceptionally complex. However, linear search of data structures that fit in level
1 cache is not a significant source of delay.

• The user interface to NUTIK is a command line structure that gives great flex-
ibility and zero intuition. In large part, the awkwardness of the command line
is due to NUTIK being a single tool with multiple functions, including con-
struction of an error (noise) model, conversion of video or still images into a
TIK-format IMEV, and rendering of images from an IMEV. Separating these
functions would simplify the command line for each, and a graphical user in-
terface could make parameter setting more intuitive.

• The exposure function specification file format used by NUTIK is editable as a
text file, but is ponderous and highly error-prone. A graphical user interface for
drawing or otherwise interactively shaping exposure functions could dramati-
cally reduce the difficulty for people to begin playing with IMEV processing
concepts. An oversimplified interface mockup appears in Figure 4.1.

• Mask generation also would benefit from being integrated in the graphical user
interface for exposure function specification. Image editors can easily create and
manipulate masks, but here all the masks being used by an exposure function
are encoded as a single image, not as separate 1-bit mask layers – merging layer
masks adds some steps to the workflow. Beyond that, it is common that a mask
will be created from a rendering of the same IMEV with a simple interval, and
that does not happen within a separate image editor. It would be highly desir-
able for the graphical user interface for exposure function specification be able
to directly render temporary images and use them to create and edit masks.
Ideally, that tool could also incorporate some templates for common applica-
tions and intelligent default handling potentially using artificial intelligence to
recognize background and foreground elements, etc.

• In decoupling exposure parameters from how image data is acquired, the basic
concept of what constitutes a correct exposure becomes lost. Instead, IMEV
rendering has a normalization problem. One could think in terms of resolv-
ing this by an auto-levels type of mechanism, or by high dynamic range tone
mapping, but the IMEV data provides a great deal of flexibility that should
be accessible to the user. NUTIK has been through a number of different
normalization schemes during its development. Perhaps most intuitive to pho-
tographers would be normalization by the total area under the curve for each
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function, but this rule behaves strangely when a negative gain is applied. Many
developmental versions of NUTIK normalized the entire output frame to the
longest live interval. This practice made it convenient to design the individual
functions, but very difficult to work out sets of functions which produce roughly
even overall brightness, as the user has to design functions with approximately
the same area under the curve to maintain reciprocity. The current version
normalizes to the live time of the function used to generate each site — that
is the total summed value of scene data contributions at each point is divided
by the total time the integration for that point was non-zero. This convention
makes it straightforward to expose images with relatively uniform brightness
from multiple different functions applied to different regions, and multiple non-
zero segments applied to the same region, both of which are otherwise some-
what difficult to compute. However, this causes weights to work in a somewhat
counter-intuitive way; the gains specified in the functions are the fraction of the
scene appearance taken from that portion of the interval so exposures of different
length with the same specified gain will produce images of the same brightness.
A user interface that can quickly preview normalization choices should make
the process of adjusting tonality more intuitive.

NUTIK and FnPlotter.py were created to be freely available as an open source
tools. Although neither of these tools is tuned for end-user experience, they do serve
as a working prototype implementation of the new core technologies for IMEV render-
ing. They are intended to encourage future research, experimentation, construction of
user-friendly tools, and eventually widespread application of the principles presented
here.

Copyright© Paul Selegue Eberhart, 2024.
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Appendix A Non-Uniform Proof Of Concept: Matlab Prototype

Listing A.1: NonUniformPoC.m
# A simple tool for applying non - uniform gain to integrating a

series of image data
# Makes a normal cubic spline based on user - supplied control points

to model the gain function for each region
# Applies the average gain for the frame interval sampled from that

integration function
# Selects gain functions based on a set of regions specfied as an

input -sized pgm with one gray per region / function .

#### This part is setup ####
#Image Input Setup
fr =(1/240) ; # framerate of input sequence , in seconds (not sensed ,

video package broken on 5.x)
path=" 20190930 _205109 .mp4"; #Path to source file

#Read in an appropriate user - created mask
mask= imread (’PenguinRockMask .pgm ’);
mask=cast(mask ,’double ’);
#Mask values defined in the mask
# would be better to get from mask automatically ,
# but I keep seeing border pixels w/ garbage
gray =[255 ,128];
fns= length ( unique (gray));

# Integration Functions Setup
pts= [100 , 200];
x=0:( max(pts) -1);
y=zeros (fns ,max(pts));
y(1 ,1: pts (1))=y=[0 0 0 0 0 0 0 0 0 10 30 50 30 10 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 10 30 50 30 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ];
y(2 ,1: pts (2))=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0];

#### End of configuration ####

# changem cribbed from ,
# https :// stackoverflow .com/ questions /11952037/ replace -values -in -

matrix -with -other - values
# because I’m not using a commercial toolbox for this
function mapout = changem (Z, newcode , oldcode )
% Identical to the Mapping Toolbox ’s changem
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% Note the weird order: newcode , oldcode . I left it unchanged from
Matlab .
if numel( newcode ) ˜= numel( oldcode )

error(’newcode and oldcode must be equal length ’);
end

mapout = Z;

for ii = 1: numel( oldcode )
mapout (Z == oldcode (ii)) = newcode (ii);

end
end

#Show the integration functions ( comment to hide)
for dfs =1: fns

figure (dfs);
xspline =0:0.01: pts(dfs);
yspline = spline (x(1: pts(dfs)),y(dfs ,1: pts(dfs)),xspline );
ylabel ("gain");
xlabel (" fractional time");
plot(xspline ,yspline ,"g-",x(1: pts(dfs)),y(dfs ,1: pts(dfs)),"b+");

endfor

#Have ffmpeg process video for frames
# In a better world , I’d use the video package , but it ’s currently

broken on 5.x
# https :// savannah .gnu.org/bugs /?51344
# That would give automatic frame -rate extraction , but nooo
## ffmpegline =[" ffmpeg -i ", path ," -vcodec ppm img %03d.ppm "]
## system ( ffmpegline );

t=0; #time
fc =0; # number of frames ingested , maintained seperately because I’m

lazy
sumimg =0;

#for each input image
files = dir(’img *. ppm ’);
numimg = length (files);
texp = fr* numimg ;
for file = files ’

#read in image
img= imread (file.name);
# Promote for range
img= im2double (img);
# compute gains for that frame
for gfs =1: fns

#Still don ’t quite touch the last control point
gain(gfs)=( ...

interp1 (x(1: pts(gfs)),y(gfs ,1: pts(gfs)) ,(t/texp)*( pts(gfs)
-1.01) ," spline ") + ...

interp1 (x(1: pts(gfs)),y(gfs ,1: pts(gfs)) ,((t+fr)/texp)*( pts
(gfs) -1.01) ," spline "))/2;
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# printf (" Frame %d gain %d\n", fc , gain);
endfor
#apply to frame

gainmask = changem (mask ,gain ,gray);
imgmod =img .* gainmask ;
#add frame to sum
sumimg = imgmod + sumimg ;
fc=fc +1; # incriment frame count
t=t+fr; # incriment time

endfor

# Divide by number of frames
finalimg = sumimg /fc;
# cleanup
## delete img *. ppm;
#save and display rendered image
imwrite (finalimg ," result .ppm");
figure (gfs +1);
imshow ( finalimg );
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Appendix B NUTIK

B.1 NUTIK Mask Gain Header

Listing B.1: MaskGain.h
/* Header for adding temporally and spatially non uniform

integration support to tik */

# include <limits >

# define MAXLINE 1000
# define MAXPTS 20

typedef struct {
double time;
double gain;

}point;

extern point fns [256][ MAXPTS ]; // Points per function
extern int fnc [256];
extern Mat mask;

// Declare the functions

int readMask (char * maskfile );
int readGainFns (char * gainFnFile );

void dumpGainFns ();

double nextControlTime ( uint32_t where , double now);
double gainherenow (int where , double now);
double weightherebetween ( uint32_t where , double start , double end);
double FirstLive ();
double LastLive ();
double LiveTime ();
double LiveTimeFor ( uint32_t where);
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B.2 NUTIK Mask Gain Implementation

Listing B.2: MaskGain.h
/* Awful hacks to add approximate nonuniform integration to tik */

# include "tik.h"

# define CHATTY 0

// These will usually be sparse , but they are small anyway
point fns [256][ MAXPTS ]; // Points per function
int fnc [256]={0};

Mat mask;

double gainherenow (int maskval , double now)
{

int before = -1;
int after = -1;

if(fnc[ maskval ] == 0){
fprintf (stderr , "No function defined for value %d\n",maskval );
return 0;

}

// Find nearest points
// Range check , take the end value if out of range
if(now <= fns[ maskval ][0]. time){

// printf (" Time %lu before first specified time %lu\n",now ,fns[
maskval ][0]. time);

before = 0;
after = 0;

}
if(now >= fns[ maskval ][ fnc[ maskval ] -1]. time)
{

// printf (" Time %lf after last specified time %lf\n",now ,fns[
maskval ][ fnc[ maskval ] -1]. time);

before = fnc[ maskval ]-1;
after = fnc[ maskval ]-1;

}

int i = 0;
while ((( before == -1) || (after == -1)) && (i < fnc[ maskval ]-1))
{

if(fns[ maskval ][i]. time <= now && fns[ maskval ][i+1]. time >now){
// Find closest point before

before = i;
}

if(fns[ maskval ][i]. time < now && fns[ maskval ][i+1]. time >= now){
// Find closest point after

after = i+1;
}
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i++;
}

#if CHATTY
printf (" Matched time %lf in function %d with before = %d (%lf:%lf)

 after = %d (%lf:%lf) \n",now , maskval , before , fns[ maskval ][
before ].time , fns[ maskval ][ before ].gain ,after , fns[ maskval ][
after ].time , fns[ maskval ][ after ]. gain);

#endif
// Compute gain at point
if( before == after){ // We’re on a defined point

return fns[ maskval ][ before ]. gain;
}
else{
// Proportional linear interpolate between

return (fns[ maskval ][ before ]. gain *( fns[ maskval ][ after ]. time -
now)/( fns[ maskval ][ after ]. time - fns[ maskval ][ before ]. time))

+ (fns[ maskval ][ after ]. gain *( now - fns[ maskval ][ before ]. time)/(
fns[ maskval ][ after ]. time - fns[ maskval ][ before ]. time));

}
}

// Find the gain for a contribution over an interval at a point
// Tik keeps times in doubles , so I guess this takes times as doubles

?
// Weight for an interval contribution is the length times the

average gain for that interval
// Makes gains as continuous as the input data ...
double weightherebetween ( uint32_t where , double start , double end){

double len = end -start; // How long is the interval
unsigned long center = (start+end)/2; // result to unsigned long

ns for lookup
// printf (" Center Time is %lu\n", center );
// Need to turn a location into a maskval ; tik is full of raw

pointers .
// I think I can take the where from tik , and split on row size?
uint32_t r = where/mask.cols;
uint32_t c = where%mask.cols;
if ((r<0 || r>mask.rows)||(c<0 || c>mask.cols)){

fprintf (stderr ," Attempted invalid lookup at (%d,%d)\n",r,c);
}
double centergain = gainherenow (mask.at <uchar >(r, c),center );

#if CHATTY
//if(where == 90000)
printf (" Center Gain is %lf , interval is %lf \n", centergain , len);

#endif
return centergain * len;

}

// Read a grayscale PGM Image as the mask
int readMask (char * maskfile )
{

printf (" Reading mask from %s\n",maskfile );
mask = imread ( maskfile , IMREAD_GRAYSCALE );
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if ( !mask.data )
{

printf ("No image data in mask\n");
return -1;

}
return 0;

}

//A helper to print out all the currently loaded gain functions in
the same format they are accepted

void dumpGainFns ()
{

printf ("Read functions : \n");
for(int i=0;i <256;i++)
{

if(fnc[i] != 0)
{

printf ("M%d{",i);
for(int j=0;j<fnc[i];j++)
{

printf ("[%lf ,%lf]",fns[i][j].time , fns[i][j]. gain);
if(j== fnc[i]-1){ printf ("}\n");}
else { printf (","); }

}
}

}
}

int readGainFns (char * gainFnFile )
{

printf (" Reading gain functions from %s\n",gainFnFile );
FILE *ffp;
ffp = fopen(gainFnFile , "r");
if(ffp == NULL)
{

fprintf (stderr ,"Could Not Open Gain Function File %s",
gainFnFile );

exit (1);
}

// Read a set of exposure functions
char line [ MAXLINE ];
char *tok;
char *tup;
int maskval ;

double gn;
double tn;

while (fgets(line , sizeof line , ffp) != NULL) // Strip Lines
{

tok = strtok (line , "{"); // Split header from list
if(tok != NULL){
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//if(tok [0] != ’M ’){ continue ;} // Skip lines not shaped like
functions .

sscanf (tok ," M %d " ,& maskval );
if( maskval >= 0 && maskval < 256){ // Check if it’s a valid

mask value
// printf (" Found function for Mask Value %d", maskval );
if(fnc[ maskval ]!=0){

fprintf (stderr ," Warning : Mask value %d multiply defined \
n", maskval );

}
int pt = 0;
tok = strtok (NULL , "{"); // Get the list
tup = strtok (tok ,","); // Split Tuples
while(tup != NULL){

sscanf (tup ," [ %lf : %lf ] " ,&tn , &gn);
fns[ maskval ][pt]. time = tn;
fns[ maskval ][pt]. gain = gn;
pt ++;
if(pt > MAXPTS ) {

fprintf (stderr ,"Too many points defined for mask value
 %d, max of %d\n", maskval , MAXPTS );

return (-1);
}
tup = strtok (NULL ,",");

}
fnc[ maskval ]=pt;// Store the number of points for this

value
}
else{// Maskval out of range

fprintf (stderr ,"Mask value %d out of range (only 0 -255 
supported )\n", maskval );

return (-1);
}

}
}
printf ("Read mask of size %d x %d\n",mask.cols , mask.rows);
return 0;

}

// Returns the time (in ns) of the NEXT control point specified in
the input for the current mask

// To use in partitioning
// Special case 0 to mean "no relevant time partition ?" for times

after the last control point?
double nextControlTime ( uint32_t where , double now){

// printf (" Entering NextControlPoint with time %lf\n",now);
double after = -1;

// Coordinate fix
uint32_t r = where/mask.cols;
uint32_t c = where%mask.cols;
if ((r<0 || r>mask.rows)||(c<0 || c>mask.cols)){

fprintf (stderr ," Attempted invalid lookup at (%d,%d)\n",r,c);
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}
int maskval = mask.at <uchar >(r, c);

if(fnc[ maskval ] == 0){
fprintf (stderr , "No function defined for value %d\n",maskval );
return 0;

}

// now before first control point
if(now < fns[ maskval ][0]. time){

return fns[ maskval ][0]. time;
// return 0;

}
// now after last control point
if(now >= fns[ maskval ][ fnc[ maskval ] -1]. time)
{

return numeric_limits <double >:: infinity (); //We read off the end
of the control interval

}
// Have to search
// printf (" Last Control Point %d:[%lf ,%lf]\n",fnc[ maskval ]-1,fns[

maskval ][ fnc[ maskval ] -1]. time ,fns[ maskval ][ fnc[ maskval ] -1]. gain
);

int k = 0;
while (k < (fnc[ maskval ]-1))
{

// printf (" Checking %d,%lf\n",k,fns[ maskval ][k]. time);

// if(now > fns[ maskval ][k]. time) { printf (" %d Before \n",k);}
// if(now == fns[ maskval ][k]. time) { printf (" %d At\n",k);}
// if(now < fns[ maskval ][k]. time) { printf (" %d After\n",k);}

if (( fns[ maskval ][k].time <= now) && (fns[ maskval ][k+1]. time >now))
{ // Find closest point after

// after= fns[ maskval ][k+1]. time;
// printf (" nextControlTime for function %d time %lf: Found %lf

at position %d\n", maskval , now , after ,k+1);
return fns[ maskval ][k+1]. time;

}
k++;

}
fflush ( stdout );
fprintf (stderr , " Exited nextControlTime for function %d time %lf 

with no time found !\n", maskval , now );
exit (1);
return 0;

}

/* Locate the control point _before_ the first non -zero gain in the
function spec */

// One before because interpolation includes the prior point
double FirstLive ()
{

double first = numeric_limits <double >:: infinity ();
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for(int i=0;i <256;i++)
{

if(fnc[i] != 0)
{

for(int j=0;j<fnc[i];j++)
{

// The next point has non -zero gain and
// the current point has an earlier time than previously

seen
// Update the earliest
if (( fns[i][j+1]. gain != 0) && (fns[i][j].time <first))
{

first = fns[i][j]. time;
}

}
}

}
#if CHATTY

printf ("First live control time is %lf\n",first);
#endif

return first;
}

/* Locate the control point after the last non -zero gain in the
function spec */

// One past because interpolation includes the next point
double LastLive ()
{

double last = 0;
for(int i=0;i <256;i++)
{

if(fnc[i] != 0)
{

for(int j=0;j<fnc[i];j++)
{

// The next point has non -zero gain and
// the current point has a later time than previously seen
// Update the earliest
if (( fns[i][j]. gain != 0) && (fns[i][j+1]. time >last))
{

last = fns[i][j+1]. time;
}

}
}

}
#if CHATTY

printf ("Last live control time is %lf\n",last);
#endif

return last;
}

// Return the total amount of time there are non -zero contributions
// If there are multiple functions , return the longest live time
// A little sloppy because of slopes , will tend to " underexpose "
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double LiveTime ()
{

double live = 0;
double fnlive =0;
double start = 0;
double stop = 0;
for(int i=0;i <256;i++) // For each function
{

if(fnc[i] != 0) // Which has control points
{

for(int j=0;j<fnc[i];j++) // Scan the control points
{

// The current control point has 0 gain and next point has
non -zero gain

if (( fns[i][j]. gain == 0) && (fns[i][j+1]. gain != 0))
{

start = fns[i][j]. time;
// printf (" Additional start time %lf\n",start);

}
// The current point has non -zero and the next has 0 gain
if (( fns[i][j]. gain != 0) && (fns[i][j+1]. gain == 0))
{

// printf (" Additional stop time %lf , adds %lf\n",fns[i][j
+1]. time ,fns[i][j+1]. time - start);

fnlive += fns[i][j+1]. time - start;
}

}
}
// Update longest found
if( fnlive > live)
{

live = fnlive ;
}
fnlive =0;

}
//#if CHATTY

printf (" Longest live control time is %lf\n",live);
//#endif

return live;
}

// Return the total amount of time there are non -zero contributions
for a specific function

double LiveTimeFor ( uint32_t where)
{

double fnlive =0;
double start = 0;
double stop = 0;
double deadtime = 0;

// Coordinate fix
uint32_t r = where/mask.cols;
uint32_t c = where%mask.cols;
if ((r<0 || r>mask.rows)||(c<0 || c>mask.cols)){
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fprintf (stderr ," Attempted invalid lookup at (%d,%d)\n",r,c);
}
int maskval = mask.at <uchar >(r, c);

if(fnc[ maskval ] == 0){
fprintf (stderr , "No function defined for value %d\n",maskval );
return 0;

}
if(fnc[ maskval ] != 0) // Function has control points
{

for(int j=0;j<fnc[ maskval ];j++) // Scan the control points
{

// The current control point has 0 gain and next point has
non -zero gain

if (( fns[ maskval ][j]. gain == 0) && (fns[ maskval ][j+1]. gain !=
0))

{
start = fns[ maskval ][j]. time;

}
// The current point has non -zero and the next has 0 gain
if (( fns[ maskval ][j]. gain != 0) && (fns[ maskval ][j+1]. gain ==

0))
{

fnlive += fns[ maskval ][j+1]. time - start;
}

}
}

// printf (" LiveTime of function %d = %lf\n",maskval , fnlive );
return fnlive ;

}
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B.3 NUTIK Render Implementation

Listing B.3: MaskGain.h
/* render .cpp
*/

# include "tik.h"

typedef struct {
double start , stop; /* Exposure interval */
double qual; /* Samples used to make image */
double divby; /* For scaling */
double *image;
int more; /* More pixels not yet done? */

} interval_t ;

static interval_t render [ MAXRENDER ];
static int rendersp = 0;
static char * infile = 0;
static int dottik = 0;
static double minstart = 0;

# define FOR_RENDER for (r=0; r< rendersp ; ++r)
# define START ( render [r]. start)
# define STOP ( render [r]. stop)
# define QUAL ( render [r]. qual)
# define DIVBY ( render [r]. divby)
# define IMAGE ( render [r]. image)
# define MORE ( render [r]. more)
# define SUM(X) *( IMAGE + (X))

//# define WATCHSPOT 90000
# define WATCHSPOT 273600
// Broken in old version 91058

static inline unsigned int
xinu( unsigned int x)
{

unsigned int y;

*((( char *) &y) + 0) = *((( char *) &x) + 3);
*((( char *) &y) + 1) = *((( char *) &x) + 2);
*((( char *) &y) + 2) = *((( char *) &x) + 1);
*((( char *) &y) + 3) = *((( char *) &x) + 0);
return (y);

}

static void
TIKrenderWriteFile ( register int r)
{

char outfile [4*1024];
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char *s;

sprintf (outfile , e_outfile , r);
INFO(" writing \"%s\" as frame %d (%1.3 fs @ %1.3 fs) from \"%s\" 

with quality %1.3f\n",
outfile ,
r,
(STOP -START) / 1000000000.0 ,
START / 1000000000.0 ,
infile ,
QUAL);

printf (" Watched pixel has value [R,G,B]=[%lf ,%lf ,%lf ].\n",IMAGE[
WATCHSPOT ],IMAGE[ WATCHSPOT +1], IMAGE[ WATCHSPOT +2]);

if ((s = tdci2jpeg (outfile , IMAGE)) != 0) {
ERROR( ERROR_WRITE ,

"%s %s\n",
outfile ,
s);

}

MORE = 0;
free(IMAGE);
IMAGE = (( double *) 0);

}

void
badformat ()
{

ERROR( ERROR_FORMAT , "bad format in TIK RGB file\n");
}

void
TIKrenderSimul (void)
{

// printf (" Beginning TIKrenderSimul \n");
register uint8 *p;
register int r;

double fnfirstlive = FirstLive ();
double fnlastlive = LastLive ();

printf (" Control Function live range from [%lf ,%lf]\n",fnfirstlive ,
fnlastlive );

// printf (" expose -b%lf -t%lf \n", fnfirstlive /1e9 ,( fnlastlive -
fnfirstlive )/1e9);

/* Anything requested ? */
if ( rendersp < 1) {

ERROR( ERROR_EXPOSE ,
"no exposures requested \n");

}
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/* Open the input file */
if ( dottik ) {

if (0 > (PNMfd = open(infile , O_RDONLY ))) {
ERROR(ERROR_OPEN ,

"could not open TIK file %s\n",
infile );

}
} else {

start_opencv ( infile );
}

/* Initialize wave stuff */
memcpy (& wavework , &waveref , sizeof ( waveref ));
if ( waveref .x > 0) {

/* Non -zero X means this is next frame */
wavework .b += waveref .f;

}
wavep = & wavework ;
// printf (" Before setting up wave stats\n");
/* Check we have an image */
if (p = PNMreader ()) {

double gamma [256];
register double invgamma ;
register uint32 xy;
register uint32 xyc;
register double *from;
register uint8 *ref;
register double wf;
register double wt;
register double now;
register uint32 where;
register int i, off , n, r;
// printf (" Found an input\n");
memcpy (& waveref , &wavework , sizeof ( waveref ));
xy = wavex * wavey;
xyc = xy * (( wavetype == wavePNM ) ? 3 : wavec);
from = (( double *) calloc (xy , sizeof ( double )));

/* Mark all frames as no pixels rendered */
FOR_RENDER MORE = xy;

ref = p; /* Set initial TDCI values */
wf = (( wavetype == wavePNM ) ? (1000000000.0 / 24) : wavef);
wt = ((( wavet < 1) || (wavet > wavef)) ? wavef : wavet);
now = (waveb / 1000000000.0) + wf;
n = 0;
// printf (" After setting up wave stats\n");
/* Create gamma mapping info */
if ( e_gamma == 0) {

e_gamma = (( waveg == 0) ? 1.0 : (waveg / 1000000.0) );
}
for (i=0; i <256; ++i) {

gamma[i] = (( e_gamma == 1) ?
(( double ) i) :
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pow ((( double ) i), e_gamma ));
}
invgamma = 1.0 / e_gamma ;
// printf (" Before selecting wavetype \n");
/* Stuff specific to different formats */
switch ( wavetype ) {
case waveRGB :

// printf (" Entered WaveRGB at time %lf\n",now);
/* Should be 0 separator ; skip over it */
if ( PNMnextc ()) badformat ();
PNMnextc ();

/* Process TDCI until a little past stop ...
past stop because we need frame after so we can
interpolate the slope in the gap between samples
Initialize where to inc past end of first frame

*/
where = xy - 1;
while (! PNMtimedout ) {

register uint32 shift = 0;
register int c;
uint8 v[3 + 1]; /* +1 to allow PNMnextbn hack below */
register int natstart = n;
register int left = 0;

/* Skip to next changed pixel */
++ where;
do {

/* 7 bits of skip at a time , low first */
where += (((c = PNMc) & 0x7f) << shift);
shift += 7;
while (where >= xy) {

/* In another frame ... */
where -= xy;
now += wf;
++n;
INFO("Frame %d: %1.3 fs        \r",

n,
(now / 1000000000.0) );

}
PNMnextc ();
if ( PNMtimedout ) badformat ();

} while (c & 0x80);

/* Where are we? */
off = where * wavec;

/* Get value of this sample */
#ifdef NOTNOW

for (i=0; i<wavec; ++i) {
v[i] = PNMc;
PNMnextc ();
if ( PNMtimedout ) badformat ();

}
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#else
v[0] = PNMc;
PNMnextbn (&(v[1]) , wavec);
if ( PNMtimedout ) badformat ();
PNMc = v[wavec ];

#endif

/* Add contribution from previous sample to sum */
if (now > minstart ) {

FOR_RENDER {
// printf (" Rendering frame START :%lf , STOP :%lf\n",START ,

STOP);
if (( MORE > 0) && (now > START)) {

double f = from[where ];
double g = now - (wf - wt); /* start of gap between

samples */
double fstart = (( START > f) ? START : f);
double fstop = ((g > STOP) ? STOP : g);
double gstart = (( START > g) ? START : g);
double gstop = (( now > STOP) ? STOP : now);
uint32 off = where * wavec;

/* Newly rendering this frame? */
if (IMAGE == (( double *) 0)) {

if (!( IMAGE = (( double *) calloc (rendersp , xyc *
sizeof ( double ))))) {

ERROR( ERROR_EXPOSE ,
" cannot allocate memory for TIK virtual 

exposure ");
}
printf (" Starting frame in WaveRGB \n");

}

/* Add portion of previous sample */
if ( fstart < fstop) {

double sfstop = fstop; // Assume it’s the end for now
double sfstart = fstart ; // Assume it’s the beginning

for now
double nextcp = nextControlTime (where , sfstart );
// Split on control points
while (nextcp < fstop){

sfstop = nextcp ;
if(where == WATCHSPOT ){

printf (" Cracking leading sample [%lf ,%lf] on 
control point %lf\n",sfstart ,sfstop , nextcp );

}
double w = sfstop - fstart ;
double weight = weightherebetween (where , sfstart ,

sfstop );
if(where == WATCHSPOT ){

printf (" Including leading sample from [%lf ,%lf],
 weight %lf\n",sfstart ,sfstop , weight );

}
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for (i=0; i<wavec; ++i) SUM(off+i) += (gamma[ref[
off+i]] * weight * DIVBY);

/* Add -in fraction from real data frames */
QUAL += (1.0 + (n - natstart )) * (w / (now - f));
// Advance the interval
sfstart = sfstop +1;
nextcp = nextControlTime (where , sfstart );

}
// Do the remainder after the last control point

double w = fstop - sfstart ;
double weight = weightherebetween (where , sfstart ,

fstop);

if(where == WATCHSPOT ){
printf (" Including end of leading sample interval 

from [%lf ,%lf], weight %lf\n", sfstart ,fstop ,
weight );

}
for (i=0; i<wavec; ++i) SUM(off+i) += (gamma[ref[

off+i]] * weight * DIVBY);
/* Add -in fraction from real data frames */
QUAL += (1.0 + (n - natstart )) * (w / (now - f));

}/* End Previous Sample Portion */
// printf (" Finished Previous Sample \n");

/* Add portion of gap as a slope */
/* This code is only called if the input shutter angle

is expressly specified */
if ( gstart < gstop) {

double wstart = ( gstart - g) / (now - g); //(start -
beginning of gap)/(now - beginning of gap)

double wstop = (gstop - g) / (now - g);
double wgap = gstop - gstart ;

double nextcp = nextControlTime (where , gstart );
double sgstart = gstart ;
double sgstop = gstop;
// Need to chop the gap not the end model
// double swstart = wstart ;
// double swstop = wstop;
double swgap = gstop - gstart ;

double weight ;

if(where == WATCHSPOT ){ printf (" Handling gap from [%
lf ,%lf]\n",gstart ,gstop);}

while ( nextcp < gstop)// Input function changes during
gap

{
// Cut a partition
if(where == WATCHSPOT ){ printf ("Split gap on %lf\n"

,nextcp );}
sgstop = nextcp ;
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weight = weightherebetween (where , sgstart , sgstop )
;

if(where == WATCHSPOT ){ printf (" Processed gap from 
[%lf ,%lf] with weight %lf\n",sgstart ,sgstop ,
weight );}

for (i=0; i<wavec; ++i) {
/* Compute gap end values , then average * wgap

to get area */
double vstart = (ref[off+i] * (1.0 - wstart )) +

(gamma[v[i]] * wstart );
double vstop = (ref[off+i] * (1.0 - wstop)) + (

gamma[v[i]] * wstop);
SUM(off+i) += ( weight * (( vstart + vstop) / 2.0)

* DIVBY);
}

/* Add -in gap fraction as if it is from one frame */
QUAL += (wgap / (now - f));
sgstart = sgstop +1;
nextcp = nextControlTime (where , sgstart );

}
// Otherwise just do the remainder in one shot
weight = weightherebetween (where , sgstart , sgstop );
if(where == WATCHSPOT ){ printf (" Processed trailing 

gap from [%lf ,%lf] with weight %lf\n",sgstart ,
sgstop , weight );}

for (i=0; i<wavec; ++i) {
/* Compute gap end values , then average * wgap to

get area */
double vstart = (ref[off+i] * (1.0 - wstart )) + (

gamma[v[i]] * wstart );
double vstop = (ref[off+i] * (1.0 - wstop)) + (

gamma[v[i]] * wstop);
SUM(off+i) += ( weight * (( vstart + vstop) / 2.0)*

DIVBY);
}
/* Add -in gap fraction as if it is from one frame */
QUAL += (wgap / (now - f));

}/* End Gap Portion */

if (now > STOP+wf) {
printf (" Entering trailing code\n");
/* Add -in data for other pixels */
int pos;
int off = 0;
for (pos =0; pos <xy; ++ pos) {

double f = from[pos ];
double localstart = ((f < START) ? START : f);
double w = STOP - localstart ;
double weight = weightherebetween (pos ,localstart ,

STOP);
double nextcp = nextControlTime (pos , localstart );

if(pos == WATCHSPOT ){
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printf (" Handling trailing sample from [%lf ,%lf],
 next control point =%lf\n",localstart ,STOP ,
nextcp );

}
double splitstart = localstart ;
double splitstop = (( nextcp < STOP)? nextcp :STOP);

// whichever comes first
double subw = splitstop - splitstart ;

while ( splitstop < STOP){
// Get weight for sub - interval
weight = weightherebetween (pos ,splitstart ,

splitstop );

if(pos == WATCHSPOT ){
printf (" Handling trailing sub - sample from [%lf ,%

lf], weight =%lf\n",splitstart ,splitstop ,
weight );

}
// Make Contribution
if (subw < 0) {

subw = 0;
weight = 0;
if(pos == WATCHSPOT ){
printf (" Squashed negative weight \n");
}

}
off=pos*wavec;
for (i=0; i<wavec; ++i) {

SUM(off) = SUM(off) + (( gamma[ref[off ]] *
weight )* DIVBY);

++ off;
++ QUAL;

}

// Update Control region
splitstart = splitstop ;
nextcp = nextControlTime (pos , splitstart );
splitstop = (( nextcp < STOP)? nextcp :STOP);

}
// Remainder of last split to stop
weight = weightherebetween (pos ,splitstart , splitstop )

;
subw = splitstop - splitstart ;
if(pos == WATCHSPOT ){
printf (" Handling trailing final sub - sample from [%

lf ,%lf], weight =%lf\n",splitstart ,splitstop ,
weight );

}
// Make Contribution
if (subw < 0) {

subw = 0;
weight = 0;
if(pos == WATCHSPOT ){
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printf (" Squashed negative weight \n");
}

}
off=pos*wavec;
for (i=0; i<wavec; ++i) {

SUM(off) = SUM(off) + (( gamma[ref[off ]] * weight
)* DIVBY);

if ( e_gamma != 1) {
SUM(off) = pow(SUM(off), invgamma );

}
++ off;
++ QUAL;

}
}

printf ("Re - normalizing Areas\n");
//Re - normalize for individual functions
off =0;
for(where = 0; where <xy; ++ where){

for(i=0;i<wavec ;++i){
IMAGE[off ]*= DIVBY/ LiveTimeFor (where);
++ off;

}
}
// printf (" Correcting exposure quality \n");
/* Correct exposure quality */
QUAL /= xy;
/* Done with this virtual exposure ; write the file

*/
TIKrenderWriteFile (r);

}/* End Trailing Sample Portion */
}

/* Still any images left incomplete ? */
left += (MORE > 0);

}

/* Check to see if any frames not yet rendered */
if (left < 1) goto noneleft ;

}

/* Record this sample */
from[where] = now;
for (i=0; i<wavec; ++i) ref[off+i] = v[i];

}

/* Update image with last samples ...
which we’ll assume persist until stop ,
because we can ’t know otherwise ;-)
Also divide by time to get average values .

*/
// PSE: What is this? I thought we were already to the end?
FOR_RENDER
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if (MORE > 0) {
char outfile [4*1024];
char *s;

off = 0;
for (where =0; where <xy; ++ where) {

double f = from[where ];
double w = STOP - ((f < START) ? START : f);

// Does this potentially need to be cracked on a control
point?

double weight = weightherebetween (where , f, w);
if(where == WATCHSPOT ){

printf (" Processing residual from [%lf ,%lf], weight %lf \
n",f,w, weight );

}
if (w < 0) {

w = 0;
weight = 0;
if(where == WATCHSPOT ){
printf (" Squashed negative interval segment in residual \n

");
}

}
for (i=0; i<wavec; ++i) {

SUM(off) = (SUM(off) + (gamma[ref[off ]] * weight )) *
DIVBY;

if ( e_gamma != 1) {
SUM(off) = pow(SUM(off), invgamma );

}
++ off;

/* Add -in fraction from real data */
++ QUAL;

}
}

printf ("Re - normalizing Areas\n");
//Re - normalize for individual functions
for(where = 0; where <xy; ++ where){

for(i=0;i<wavec;i++){
IMAGE[where+i]*= DIVBY/ LiveTimeFor (where);

}
}

/* Correct exposure quality */
QUAL /= xy;

/* Done with this virtual exposure ; write the file */
TIKrenderWriteFile (r);

}
break ;

case waveUYVYYYold :
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/* Should be a P5 header next ...
we know how to read that!

*/
for (where =0; where <xyc; where +=6) {

ref[where] += 128;
ref[where +2] += 128;

}
p = P5reader ();
while (p) {

register double f = now - wf;
register double g = now - (wf - wt); /* start of gap between

samples */
register int left = 0;

FOR_RENDER {
if (( MORE > 0) && (now > START)) {

register double fstart = (( START > f) ? START : f);
register double fstop = ((g > STOP) ? STOP : g);
register double gstart = (( START > g) ? START : g);
register double gstop = (( now > STOP) ? STOP : now);
register double wstart = ( gstart - g) / (now - g);
register double wstop = (gstop - g) / (now - g);
register double wgap = gstop - gstart ;

/* Newly rendering this frame? */
if (IMAGE == (( double *) 0)) {

if (!( IMAGE = (( double *) calloc (rendersp , xyc *
sizeof ( double ))))) {

ERROR( ERROR_EXPOSE ,
" cannot allocate memory for UYVYYY virtual 

exposure ");
}

}

/* Update quality */
++ QUAL;

for (where =0; where <xyc; where +=6) {
p[where] += 128;
p[where +2] += 128;

}
for (where =0; where <xyc; ++ where) {

/* Add contribution from previous sample to sum */
if (now > START) {

/* Add portion of previous sample */
if ( fstart < fstop) {

register double w = fstop - fstart ;
SUM(where) += (gamma[ref[where ]] * w);

}

/* Add portion of gap as a slope */
if ( gstart < gstop) {

/* Compute gap end values , then average * wgap to
get area */
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register double vstart = (ref[where] * (1.0 -
wstart )) + (gamma[p[where ]] * wstart );

register double vstop = (ref[where] * (1.0 - wstop
)) + (gamma[p[where ]] * wstop);

SUM(where) += (wgap * (( vstart + vstop ) / 2.0));
}

}
}

/* Update more and write file */
if (now >= STOP) {

/* Done with this virtual exposure ; write the file */
TIKrenderWriteFile (r);

}
}

/* Still any images left incomplete ? */
left += (MORE > 0);

}

/* Check to see if any frames not yet rendered */
if (left < 1) goto noneleft ;

/* Next image */
now += wf;
free(ref);
ref = p;
p = P5reader ();

}

/* Did we get another ? If so , discard it. */
if (p) free(p);

/* Update image with last samples ...
which we’ll assume persist until stop ,
because we can ’t know otherwise ;-)
Also divide by time to get average values .

*/
FOR_RENDER
if (MORE > 0) {

/* Newly rendering this frame? */
if (IMAGE == (( double *) 0)) {

if (!( IMAGE = (( double *) calloc (rendersp , xyc * sizeof (
double ))))) {

ERROR( ERROR_EXPOSE ,
" cannot allocate memory for UYVYYY virtual 

exposure ");
}

}

/* Update quality */
++ QUAL;

for (where =0; where <xyc; ++ where) {
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register double f = now - wf;
register double w = STOP - ((f < START) ? START : f);

if (w < 0) w = 0;
SUM(where) = (SUM(where) + (gamma[ref[where ]] * w)) *

DIVBY;
if ( e_gamma != 1) {

SUM(where) = pow(SUM(where), invgamma );
}

}

/* Done with this virtual exposure ; write the file */
TIKrenderWriteFile (r);

}
break ;

case waveUYVYYY :
/* Make all values signed */
for (where =0; where <xyc; where +=6) {

ref[where] += 128;
ref[where +2] += 128;

}

/* Resize from [] */
free(from);
from = (( double *) calloc (xyc , sizeof ( double )));

/* Process TDCI until a little past stop ...
past stop because we need frame after so we can
interpolate the slope in the gap between samples
Initialize where to inc past end of first frame

*/
PNMnextc ();
where = 0;
while ((! PNMtimedout ) && ( PNMnextw () != 1)) {

register uint32 change = PNMw;
register int left = 0;

if ( change & 1) {
/* This is a span record */
int skip = 0;
where += (( change + change ) & ˜3);

/* Skip complete frames */
while (where >= xyc) {

now += wf;
++ skip;
where -= xyc;

}

if (skip > 0) printf ("now = %gs\n", now /1000000000.0) ;
} else {

/* Correct sample signedness */
for (i=0; i <4; ++i) {
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switch (( where+i) % 6) {
case 0:
case 2:

*((( uint8 *) &PNMw) + i) ˆ= 128;
}

}

/* Add contribution from previous sample to sum */
if (now > minstart ) {

double refd [4], newd [4];

/* Map the old and new values */
for (i=0; i <4; ++i) {

refd[i] = ref[where+i];
newd[i] = *((( uint8 *) &PNMw) + i);

}

FOR_RENDER {
if (( MORE > 0) && (now > START)) {

register double f = from[where ];
register double g = now - (wf - wt); /* start of gap

between samples */
register double fstart = (( START > f) ? START : f);
register double fstop = ((g > STOP) ? STOP : g);
register double gstart = (( START > g) ? START : g);
register double gstop = (( now > STOP) ? STOP : now);

/* Newly rendering this frame? */
if (IMAGE == (( double *) 0)) {

if (!( IMAGE = (( double *) calloc (rendersp , xyc *
sizeof ( double ))))) {

ERROR( ERROR_EXPOSE ,
" cannot allocate memory for TIK virtual 

exposure ");
}

}

/* Add portion of previous sample */
if ( fstart < fstop) {

register double w = fstop - fstart ;

for (i=0; i <4; ++i) {
SUM(where+i) += refd[i] * w;

}

/* Add -in fraction from real data frames */
QUAL += (w / (now - f));

}

/* Add portion of gap as a slope */
if ( gstart < gstop) {

register double wstart = ( gstart - g) / (now - g);
register double wstop = (gstop - g) / (now - g);
register double wgap = gstop - gstart ;
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for (i=0; i <4; ++i) {
/* Compute gap end values , then average * wgap

to get area */
register double vstart = (refd[i] * (1.0 -

wstart )) + (newd[i] * wstart );
register double vstop = (refd[i] * (1.0 - wstop)

) + (newd[i] * wstop);
SUM(off+i) += (wgap * (( vstart + vstop ) / 2.0));

}

/* Add -in gap fraction as if it is from one frame
*/

QUAL += (wgap / (now - f));
}

/* Update more */
if (now > STOP+wf) {

/* Add -in data for other pixels */
register int pos;

for (pos =0; pos <xyc; ++ pos) {
register double f = from[pos ];
register double w = STOP - ((f < START) ? START

: f);
if (w < 0) w = 0;
SUM(pos) = (SUM(pos) + (ref[pos] * w)) * DIVBY;
++ QUAL;

}

/* Correct exposure quality */
QUAL /= (xyc / 4);

/* Done with this virtual exposure ; write the file
*/

TIKrenderWriteFile (r);
}

}

/* Still any images left incomplete ? */
left += (MORE > 0);

}

/* Check to see if any frames not yet rendered */
if (left < 1) goto noneleft ;

}

/* Update from pixel data */
for (i=0; i <4; ++i) {

ref[where+i] = *((( uint8 *) &PNMw) + i);
from[where+i] = now;

}
where += 4;
while (where >= xyc) {
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now += wf;
where -= xyc;

}
}

}

/* Update image with last samples ...
which we’ll assume persist until stop ,
because we can ’t know otherwise ;-)
Also divide by time to get average values .

*/
FOR_RENDER
if (MORE > 0) {

/* Newly rendering this frame? */
if (IMAGE == (( double *) 0)) {

if (!( IMAGE = (( double *) calloc (rendersp , xyc * sizeof (
double ))))) {

ERROR( ERROR_EXPOSE ,
" cannot allocate memory for UYVYYY virtual 

exposure ");
}

}

/* Update quality */
++ QUAL;

for (where =0; where <xyc; ++ where) {
register double f = now - wf;
register double w = STOP - ((f < START) ? START : f);

if (w < 0) w = 0;
SUM(where) = (SUM(where) + (ref[where] * w)) * DIVBY;

}

/* Done with this virtual exposure ; write the file */
TIKrenderWriteFile (r);

}
break ;

case wavePNM :
/* Should be a P6 header next ...

we know how to read that!
*/
printf ("PSE: Entered WavePNM Case\n");
p = P6reader ();
while (p) {

register double f = now - wf;
register double g = now - (wf - wt); /* start of gap between

samples */
register int left = 0;

FOR_RENDER { // For every output frame
if (( MORE > 0) && (now > START)) { // that still needs work
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register double fstart = (( START > f) ? START : f); //
Start as far into the current sample this output
frame starts at

register double fstop = ((g > STOP) ? STOP : g); // If
the end of this input frame is after the end of the
output frame , stop short

register double gstart = (( START > g) ? START : g); //
This is the beginning of the part interpolated from
the gap between samples

register double gstop = (( now > STOP) ? STOP : now);//
End of the part of the output interval in the gap

register double wstart = ( gstart - g) / (now - g); //
This is the next gap interval , that gets constrained
by the vstart /vstop values on the fly below?

register double wstop = (gstop - g) / (now - g);
register double wgap = gstop - gstart ;

/* Newly rendering this frame? */
if (IMAGE == (( double *) 0)) {

if (!( IMAGE = (( double *) calloc (rendersp , xyc *
sizeof ( double ))))) {

ERROR( ERROR_EXPOSE ,
" cannot allocate memory for PNM virtual 

exposure ");
}

}

/* Update quality by denoting another sample has been
included */

++ QUAL;

for (where =0; where <xyc; ++ where) {
/* Add portion of previous sample */
if ( fstart < fstop) {

register double w = fstop - fstart ; // How long is
this input sample contributing to the output
frame

SUM(where) += (gamma[ref[where ]] * w); // gamma for
correction , w is weighting by the amount of time
it is contributing

printf ("PSE: Contribution Added in WavePNM \n");
}

/* Add portion of gap as a slope */
// Wstart wstop are the weighting for the gap length
if ( gstart < gstop) {

/* Compute gap end values , then average * wgap to
get area */

register double vstart = (ref[where] * (1.0 - wstart
)) + (gamma[p[where ]] * wstart );

register double vstop = (ref[where] * (1.0 - wstop))
+ (gamma[p[where ]] * wstop);

SUM(where) += (wgap * (( vstart + vstop) / 2.0));
}
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}

/* Update more and write file */
if (now > STOP+wf) {

for (where =0; where <xyc; ++ where) {
SUM(where) = (SUM(where) * DIVBY);
if ( e_gamma != 1) {

SUM(where) = pow(SUM(where), invgamma );
}

}

/* Done with this virtual exposure ; write the file */
TIKrenderWriteFile (r);

}
}

/* Still any images left incomplete ? */
left += (MORE > 0);

}

/* Check to see if any frames not yet rendered */
if (left < 1) goto noneleft ;

/* Next image */
now += wf;
free(ref);
ref = p;
p = P6reader ();

}

/* Did we get another ? If so , discard it. */
if (p) free(p);

/* Update image with last samples ...
which we’ll assume persist until stop ,
because we can ’t know otherwise ;-)
Also divide by time to get average values .

*/
FOR_RENDER
if (MORE > 0) {

/* Newly rendering this frame? */
if (IMAGE == (( double *) 0)) {

if (!( IMAGE = (( double *) calloc (rendersp , xyc * sizeof (
double ))))) {

ERROR( ERROR_EXPOSE ,
" cannot allocate memory for PNM virtual exposure ")

;
}

}

/* Update quality */
++ QUAL;

for (where =0; where <xyc; ++ where) {
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register double f = now - wf;
register double w = STOP - ((f < START) ? START : f);

if (w < 0) w = 0;
SUM(where) = (SUM(where) + (gamma[ref[where ]] * w)) *

DIVBY; // Add in some guesses for data after the last
sample

if ( e_gamma != 1) {
SUM(where) = pow(SUM(where), invgamma );

}
}

/* Done with this virtual exposure ; write the file */
TIKrenderWriteFile (r);

}

break ;

default :
badformat ();

}

/* Clean -up */
noneleft :

free(ref);
free(from);

/* Close the input file */
if ( dottik ) {

close(PNMfd);
}

}
}

void
TIKrenderFile (int d, char * filename )
{

dottik = d;
infile = filename ;
rendersp = 0;

}

void
TIKrender ( double start , double stop)
{

/* Normalize start , stop and convert to nanoseconds */
start *= 1000000000.0;
stop *= 1000000000.0;
if (stop < start) { double t = start; start = stop; stop = t; }

/* When does the first frame start? */
if (( rendersp == 0) || (start < minstart )){

minstart = start;
// printf (" Minstart updated to %lf\n", minstart );
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}
/* Queue it up */
render [ rendersp ]. start = start;
render [ rendersp ]. stop = stop;
render [ rendersp ]. qual = 0;
// Least - nonsense to normalize by how long functions are non -zero?
// Still produces " surprising " behaviors .
// render [ rendersp ]. divby = 1.0 / (stop - start);
// render [ rendersp ]. divby = 1.0 / LiveTime ();
// Set divby to 1 and do local normalization at the end.
render [ rendersp ]. divby = 1.0 ;
render [ rendersp ]. image = (( double *) 0);
++ rendersp ;

}
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B.4 NUTIK Frontend Implementation

Listing B.4: MaskGain.h
/* tik.cpp

Temporal Image Kentucky / Kontainer

Original by Henry Dietz , June 2016

See tik.h for notices .
*/

# include "tik.h"

char * myname ; /* For error messages , name of this program */

FILE * TDCIfile = 0;

double e_begin = 0;
char * e_noisefile = 0;
double e_fps = 0; /* Frames Per Second */
double e_gamma = 0; /* Encoding gamma (0 means not set) */
int e_n = 0;
char * e_outfile = 0;
char * e_outtik = (( char *) "pnm.tik");
char * e_outimage = (( char *) "tik %05d.jpg");
double e_percent = 4.55;
double e_quality = 75;
double e_t = 0; /* Shutter time , Tv in seconds */
int e_what = WHAT_UNSPEC ;
int e_interactive = 0; /* Interactive mode? */
time_t e_update ;
int e_maketype = MAKE_UNSPEC ;

// PSE: Probably need to made a default mode that always returns 1?
char * e_maskfile = 0;
char * e_fnfile = 0;

double
atofrac (char *s)
{

/* Atof , but allowing fractions with 1/ */
if ((s[0] == ’1’) && (s[1] == ’/’)) {

return (1.0 / atof (&(s[2])));
}
return (atof(s));

}

int
main( register int argc ,
register char ** argv)
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{
register char *s;
register int i, n;
register char *fname = 0;
register double now;
time_t real_time = ( e_update = time (0));

/* Set interactive mode based on stderr */
e_interactive = isatty (2);

/* Process command line ... */
myname = argv [0];
if (argc < 2) {

usage:
fprintf (stderr ,

"Usage: %s { exposure_settings }\n"
"-a#       Set Tv by shutter angle; Tv=( angle /360)/FPS\n"
"-b#       Begin exposure time in seconds ( default 0); needs .

tik input\n"
"-eNAME    Error model is NAME; blank creates from video of a 

constant scene\n"
"-f#       Frames per second , FPS ( default 24)\n"
"-g#       Gamma of encoded data (1.0 linear default ; 2.2 

typical JPEG)\n"
"-i#       Interactive progess update seconds -1 ( default %d, 0

 means never , -i toggles )\n"
"-kFNFILE Specify a function spec file for exposure functions \

n"
"-mMASKFILE Specify a (PGM) mask file to define areas for 

exposure \n"
"-n#       Number of frames to encode / decode ( default 1 output

, all input)\n"
"-oNAME    Output filename is NAME ( default %s)\n"
"-p#       Minimum %% probability same to factor ( default %0.2

f; std. dev. are 32, 5, 0.3)\n"
"-q#       Quality %% ( default %0.0f; for JPEG output or TIK 

encoding )\n"
"-t#       Shutter speed in seconds , Tv ( default to 1/ FPS or 

1/60s)\n"
"-v        Input is a video to be converted to .tik TDCI 

output \n"
" FILENAME  Process file as specified by earlier options , .tik 

assumed to be TDCI\n",
myname ,
e_interactive ,
e_outtik ,
e_percent ,
e_quality );

exit( ERROR_USAGE );
}

for (i=1; i<argc; ++i) {
if (* argv[i] == ’-’) {

switch (*( argv[i]+1)) {
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case ’a’:
e_t = atofrac (argv[i]+2);
if (e_fps == 0) {

ERROR(ERROR_ARG ,
" cannot set shutter angle before -f to set FPS\n");

}
if (e_t <= 0) {

ERROR(ERROR_ARG ,
" shutter angle must be greater than 0, not %s\n",
(argv[i]+2));

}
e_t = (e_t / (e_fps * 360.0) );
break;

case ’b’:
e_begin = atofrac (argv[i]+2);
e_what |= WHAT_TIK ;
break;

case ’e’:
e_noisefile = (argv[i]+2);
if (* e_noisefile ) {

/* Read error model file */
uint8 *p;

if ((0 > (PNMfd = open( e_noisefile , O_RDONLY ))) ||
(0 == (p = PNMreader ())) ||
(PNMx != 256) ||
(PNMy != 256) ||
( PNMmaxval > 255)) {

ERROR(ERROR_READ ,
"could not read error model file %s\n",
e_noisefile );

}
if ( wavetype != waveNOISE ) {

WARN("file %s used , but not marked as TIK NOISE\n",
e_noisefile );

}

memcpy (&( PNMerr [0][0][0]) , p, (256*256*3) );
close(PNMfd);
free(p);

/* Only makes sense for encoding */
e_what |= WHAT_VIDEO ;

} else {
/* Force create error model file */
e_what = WHAT_ERRMOD ;

}
break;

case ’f’:
e_fps = atofrac (argv[i]+2);
break;

case ’g’:
e_gamma = atofrac (argv[i]+2);
break;
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case ’i’:
if (*( argv[i]+2) == 0) {

e_interactive = ! e_interactive ;
} else {

e_interactive = atoi(argv[i]+2);
if ( e_interactive < 1) e_interactive = 1;

}
break;

// PSE20240626 : Add k and m cases for NU
case ’k’:

e_fnfile = argv[i]+2;
readGainFns ( e_fnfile );
dumpGainFns ();
break;

case ’m’:
e_maskfile = argv[i]+2;
readMask ( e_maskfile );
break;

case ’n’:
if (*( argv[i]+2) == 0) {

e_n = 0;
} else {

e_n = atoi(argv[i]+2);
if (e_n < 1) e_n = 1;

}
break;

case ’o’:
e_outfile = (argv[i]+2);

/* Guess type based on end of filename ... */
if ( e_maketype == MAKE_UNSPEC ) {

register char *p = argv[i] + 2;
register int len = strlen (p);

switch (len) {
case 1:

if (*p != ’-’) break;
/* Fall through ... */

case 0:
/* PPM stream to stdout for "-o-" or "-o" */
e_outfile = (( char *) "-");
e_maketype = MAKE_PPM ;
if ( e_what != WHAT_ERRMOD ) e_what |= WHAT_TIK ;
break ;

case 2:
case 3:

/* Too short to say ... */
break ;

default :
/* Does it end in something we know? */
p += (len - 4);
if (p[0] == ’.’) {
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if (((p[1] == ’J’) || (p[1] == ’j’)) &&
((p[2] == ’P’) || (p[2] == ’p’)) &&
((p[3] == ’G’) || (p[3] == ’g’))) {

e_maketype = MAKE_JPEG ;
e_what |= WHAT_TIK ;

}
if (((p[1] == ’P’) || (p[1] == ’p’)) &&

((p[2] == ’P’) || (p[2] == ’p’) || (p[2] == ’N’)
|| (p[2] == ’n’)) &&

((p[3] == ’M’) || (p[3] == ’m’))) {
e_maketype = MAKE_PPM ;
if ( e_what != WHAT_ERRMOD ) e_what |= WHAT_TIK ;

}
}

}
}
break;

case ’p’:
e_percent = atofrac (argv[i]+2);
if (( e_percent < 0) || ( e_percent > 100)) {

ERROR(ERROR_ARG ,
"%s is not valid; must be between -p0 and -p100\n",
argv[i]);

}
e_what |= WHAT_VIDEO ;
break;

case ’q’:
e_quality = atofrac (argv[i]+2);
if (( e_quality < 0) || ( e_quality > 100)) {

ERROR(ERROR_ARG ,
"%s is not valid; must be between -q0 and -q100\n",
argv[i]);

}
break;

case ’t’:
e_t = atofrac (argv[i]+2);
break;

case ’v’:
e_what |= WHAT_VIDEO ;
break;

default :
goto usage;

}
} else {

/* What are we supposed to do with this file?
Can ’t be nothing or more than one thing.

*/
register char *p = argv[i];
register int dottik = 0;

/* Guess based on end of filename ... */
while (*p) ++p;
p -= 4;
if ((p[0] == ’.’) &&
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((p[1] == ’T’) || (p[1] == ’t’)) &&
((p[2] == ’I’) || (p[2] == ’i’)) &&
((p[3] == ’K’) || (p[3] == ’k’))) {

/* Force encoding exposures */
e_what = WHAT_TIK ;
dottik = 1;

} else {
if ( e_what == WHAT_UNSPEC ) e_what = WHAT_VIDEO ;

}

// if (e_t && (e_fps == 0)) e_fps = 1.0 / e_t;
// if (e_fps && (e_t == 0)) e_t = 1.0 / e_fps;

switch ( e_what ) {
case WHAT_ERRMOD :

if (e_n == 0) e_n = E_N_MAX ;
if ( e_outfile == 0) e_outfile = e_outtik ;
INFO(" creating error model \"%s\" from \"%s\"\n",

e_outfile ,
argv[i]);

start_opencv (argv[i]);
PNMnoise ( e_outfile );
break;

case WHAT_VIDEO :
if (e_n == 0) e_n = E_N_MAX ;
if ( e_outfile == 0) e_outfile = e_outtik ;
if ( e_noisefile == 0) {

/* No error model specified ; make one */
register int x, y;
for (y=0; y <256; ++y) {

for (x=0; x <256; ++x) {
int z = 255 - ((x > y) ? (x-y) : (y-x));
if (z < 0) z = 0;
z -= ((255 - z) * (255 - z));
if (z < 0) z = 0;
PNMerr [x][y][0] = z;
PNMerr [x][y][1] = z;
PNMerr [x][y][2] = z;

}
}

}
start_opencv (argv[i]);
PNMtdci ( e_outfile );
break;

case WHAT_TIK :
if ( e_outfile == 0) e_outfile = e_outimage ;
now = (( e_begin < 0) ? 0 : e_begin );
if (e_n <= 1) {

/* One frame only */
e_n = 1;
if (e_t == 0) e_t = (( e_fps > 0) ? (1.0/ e_fps) : (1.0/60) )

;
if (e_fps == 0) e_fps = e_t;

} else {
/* Video sequence */
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if (e_fps == 0) e_fps = 24;
if (e_t == 0) e_t = 1.0 / e_fps;

}

/* Create exposures */
/* PSE: Hack this to default to the functions in -k if

supplied
if a spec file is loaded ,

FirstLive () and LastLive () can replace now and now+e_t
... But don ’t do it until any problems and edge cases are

worked out
*/

//if( e_fnfile ){ TIKrender ( FirstLive (), LastLive ());}

TIKrenderFile (dottik , argv[i]);
for (n=0; n<e_n; ++n) {

TIKrender (now , now+e_t);
now += (1.0 / e_fps);

}

/* Simultaneously render all frames */
TIKrenderSimul ();

/* Done with this file */
break;

default :
ERROR(ERROR_ARG ,

"what to do with %s? %s%s%s\n",
argv[i],
(( e_what & WHAT_ERRMOD ) ? " Make error model?" : ""),
(( e_what & WHAT_VIDEO ) ? " Encode as TIK?" : ""),
(( e_what & WHAT_TIK ) ? " Make exposures ?" : ""));

}
}

}

INFO(" completed in %d seconds \n", (( int)(time (0) - real_time )));
return (0);

}
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B.5 Function Plotter Script

Listing B.5: MaskGain.h
#!/ usr/bin/ python3
# Plots a gain function file for human viewing
import sys
import matplotlib . pyplot as plt
import parse as ps

if len(sys.argv) != 2:
print ("Usage: FnPlotter FnFile .fn")

fns =[];

# Line format is M$n{$t0:$g0 ] ,... ,[ $tm:$gm ]}
with open(sys.argv [1],"r") as fnfile :

for line in fnfile :
# Echo it back for testing
#print(line.strip ())
ef ={}
if line. startswith (’M’):

tokens =line.split("{")
#print( tokens )
fnum=int( tokens [0][1:])
#print (" fnum =" + str(fnum) +"\n")
ef[" maskval "]= fnum
#Strip the trailing curly and newline
tuples = tokens [1][: -2]. split(",")
times =[]
gains =[]
for pts in tuples :

#print(pts)
vals=ps.parse(" [{}:{}] ",pts)
#print (" Time: " + vals [0] + " Gain: " + vals [1])
times. append (float (vals [0]))
gains. append (float (vals [1]))

ef["times"]= times
ef["gains"]= gains
fns. append (ef)

#Print the data structure serialization if it looks like the sketchy
parser is broken

#print(fns)

# Special case the single function in a file case because matplotlib
is a little dumb

if len(fns) == 1:
fig , ax = plt. subplots ()
fig. suptitle (sys.argv [1])
ax.plot(ef["times"],ef["gains"])
ax.set(title=ef[" maskval "])
#ax[i]. set( xlabel =’time (ns)’, ylabel =’gain ’,title=ef[" maskval "])
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ax.grid ()

else:
fig , ax = plt. subplots (len(fns),sharex =True , sharey =True ,

gridspec_kw ={’hspace ’: 0.505})
fig. suptitle (sys.argv [1])
i=0
for ef in fns:

ax[i]. plot(ef["times"],ef["gains"])
ax[i]. set(title=ef[" maskval "])
#ax[i]. set( xlabel =’time (ns)’, ylabel =’gain ’,title=ef[" maskval

"])
ax[i]. grid ()
i=i+1

# fig. savefig (" test.png ")
plt.show ()
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