
A Compiler Target Model for Line Associative Registers

Paul S. Eberhart

2019-04-17

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 1 / 34

A Compiler Target Model for Line Associative Registers

Paul S. Eberhart

2019-04-17

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

“Surely there must be a less primitive way of making big changes in the
store than by pushing vast numbers of words back and forth through the
von Neumann bottleneck. Not only is this tube a literal bottleneck for the
data traffic of a problem, but, more importantly, it is an intellectual
bottleneck that has kept us tied to word-at-a-time thinking instead of
encouraging us to think in terms of the larger conceptual units of the task
at hand. Thus programming is basically planning and detailing the
enormous traffic of words through the von Neumann bottleneck, and much
of that traffic concerns not significant data itself, but where to find it.”
-John Backus
ACM Turing Award Speech, 1977

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 2 / 34

“Surely there must be a less primitive way of making big changes in the
store than by pushing vast numbers of words back and forth through the
von Neumann bottleneck. Not only is this tube a literal bottleneck for the
data traffic of a problem, but, more importantly, it is an intellectual
bottleneck that has kept us tied to word-at-a-time thinking instead of
encouraging us to think in terms of the larger conceptual units of the task
at hand. Thus programming is basically planning and detailing the
enormous traffic of words through the von Neumann bottleneck, and much
of that traffic concerns not significant data itself, but where to find it.”
-John Backus
ACM Turing Award Speech, 1977

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

• This quote is my favorite way to introduce LARs
• Backus was talking about programming languages
• It’s also a problem for architectures
• lots of people have taken shots at it, here’s ours

Overview

Goals

Line Associative Registers

LARK

History

LARc

Conclusions

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 3 / 34

Overview

Goals

Line Associative Registers

LARK

History

LARc

Conclusions

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Overview

•

Goals

Primary goal

Explore compilation for LAR-based architectures

Design a specific LAR-based ISA

Determine the required technologies to compile for LARs

Preliminary designs

Historically situate LARs

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 4 / 34

Goals

Primary goal

Explore compilation for LAR-based architectures

Design a specific LAR-based ISA

Determine the required technologies to compile for LARs

Preliminary designs

Historically situate LARs

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Goals

• Early plan was ”Port LLVM” - that went out the window
• Specific ISA is LARK
• History is a side-effect

Original Plan of Action

Background research

Specify Architecture (LARK)

Get up to speed on LLVM

Write PoC grade LLVM backend

Done

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 5 / 34

Original Plan of Action

Background research

Specify Architecture (LARK)

Get up to speed on LLVM

Write PoC grade LLVM backend

Done

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Original Plan of Action

• This was the plan in early 2010, it is now mid-2019, obv. things
didn’t work out

• It turned out the initial assumptions were completely wrong
• The first 18mo were spent learning that, the rest of the decade on

figuring out what it means
• Only recently come around to the things learned being anything but

discouraging

Line Associative Registers

Each register holds:
I a block of data
I base address and offset
I type and wordsize
I dirty bit

Tagged at load

Replace registers and caches

Use for instructions and data

Predecessor technologies: SWAR, CREGS, Compiler-Managed
Memories

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 6 / 34

Line Associative Registers

Each register holds:
I a block of data
I base address and offset
I type and wordsize
I dirty bit

Tagged at load

Replace registers and caches

Use for instructions and data

Predecessor technologies: SWAR, CREGS, Compiler-Managed
Memories

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Line Associative Registers

• Underway since early 2000s, (Krishna Melarkode MS 2004)
• Several projects to implement pieces since (Lim, Ponalla, Sparks,

Clark)
• SWAR: Vectors (Mid 90s)
• CREGS: Address Tags for Ambiguous Aliases (Deitz/Chi 89)
• Compiler-Manged: Explicit fetch

Ambiguous Alias Example

r e a d l n (i , j) ;
b := a [i]+a [j] ;
a [i] := 5 ;
c := c + a [j] ;

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 7 / 34

Ambiguous Alias Example

r e a d l n (i , j) ;
b := a [i]+a [j] ;
a [i] := 5 ;
c := c + a [j] ;

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Ambiguous Alias Example

• No way to statically determine if a[i] and a[j] are pointed at the
same thing

• Requires repeated flushes: 2 round trips
• Unknown time. L1 Cache? TLB miss?
• a[i] and a[j] in each register is two loads, always.
• a[j] would require a flush on conventional because a[i] might be

pointed at it!

LARK

LARK: (Line Associative Register architecture from Kentucky

Only LARs for memory hierarchy

Complete enough for general computation

54 instructions, 64 bit encoding
I Memory, Arithmetic, Flow Control, and Utility.

256, 2048-bit DLARS

256, 2048-bit ILARS

Simple, no virtual memory, no I/O extensions, etc.

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 8 / 34

LARK

LARK: (Line Associative Register architecture from Kentucky

Only LARs for memory hierarchy

Complete enough for general computation

54 instructions, 64 bit encoding
I Memory, Arithmetic, Flow Control, and Utility.

256, 2048-bit DLARS

256, 2048-bit ILARS

Simple, no virtual memory, no I/O extensions, etc.

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

LARK

• also ”On a Lark” because it’s meant to be a strawman design
• about 192KB of high-speed memory, reasonable in a modern context
• 4 instruction formats
• Talk about the calling conventions prelim?

DLARs

Figure: Data LAR Structure

LAR NR Data
Address

WDSZ TYP D
TAG OFFSET

2048 bits 64−m bits m bits 2 bits 2 bits 1 bit

D0

D1

D2

...

D255

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 9 / 34

DLARs

Figure: Data LAR Structure

LAR NR Data
Address

WDSZ TYP D
TAG OFFSET

2048 bits 64−m bits m bits 2 bits 2 bits 1 bit

D0

D1

D2

...

D255

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

DLARs

• low bits of address are offsets in the line
• DLARs are like fast named windows into main memory
• DLAR0 is reserved for constant 0 (which will be 0 in all

representations)

Tag Encodings

Figure: Word Size Encodings

Value Object Size

00 8

01 16

10 32

11 64

Figure: Type Encodings

Value Type

00 Reserved

01 Unsigned Integer

10 Signed Integer (2’s compliment)

11 Float (IEEE754-ish)

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 10 / 34

Tag Encodings

Figure: Word Size Encodings

Value Object Size

00 8

01 16

10 32

11 64

Figure: Type Encodings

Value Type

00 Reserved

01 Unsigned Integer

10 Signed Integer (2’s compliment)

11 Float (IEEE754-ish)

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Tag Encodings

• 8bit 754ish (1 + 4 + 3) - 1sign, 4 exponent, 3 mantissa.
• all 1 exp + 0mantissa = NaN, all 1exp + non0mantissa =∞,

0exp = 0

ILARs

Figure: Instruction LAR Structure

LAR NR Data Address

2048 bits 64 bits

I0

I1

I2

...

D255

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 11 / 34

ILARs

Figure: Instruction LAR Structure

LAR NR Data Address

2048 bits 64 bits

I0

I1

I2

...

D255

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

ILARs

• No need for dirty bits or type tags.
• Instructions execute only out of ILARs PC points to ILAR,Offset
• Could compress in memory, LARK doesn’t for simplicity

Memory Instructions

LOAD - 0b0100 + typ + wdsz

STORE - 0b0101 + typ + wdsz

Figure: LARK Memory Instruction Format

OP DST SRC1 SRC2 IMM

8 8 8 8 32

OP - Opcode Field - 8 Bits
DST - Destination LAR - 8 Bits
SRC1 - First Operand Source LAR - 8 Bits
SRC2 - Second operand source LAR - 8 Bits
IMM - Immediate value, for address calculation (Signed) - 32 Bits

addressing mode:
Base Addr = SRC1.Address + SRC2.Data + (IMM*WDSZ)

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 12 / 34

Memory Instructions

LOAD - 0b0100 + typ + wdsz

STORE - 0b0101 + typ + wdsz

Figure: LARK Memory Instruction Format

OP DST SRC1 SRC2 IMM

8 8 8 8 32

OP - Opcode Field - 8 Bits
DST - Destination LAR - 8 Bits
SRC1 - First Operand Source LAR - 8 Bits
SRC2 - Second operand source LAR - 8 Bits
IMM - Immediate value, for address calculation (Signed) - 32 Bits

addressing mode:
Base Addr = SRC1.Address + SRC2.Data + (IMM*WDSZ)

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Memory Instructions

• Load loads and sets tags
• Store only sets tags
• A sane me would have called STORE ATTR or something
• Alignment? On LAR-width bounds only
• SRC1 Address field used as base address for load
• SRC2 Data field used for effective address calculation
• Round-Robin writeback, just stall on load to dirty.
• Sparks’ LOON version used queues for data load, instruction fetch,

and data writeback with a FSM to govern.

Utility

FETCH - 0x00 - Loads one-or-more ILARs

Figure: LARK Utility Instruction Format

OP DST SRC1 SRC2 NUM IMM

8 8 8 8 16 16

OP - Opcode, 8 bits
DEST Destination ILAR - 8 bits
SRC1 - ILAR who’s address field acts as a base address, 8 bits
SRC2 - DLAR to use for the offset, 8 bits
NUM - Number of contiguous ILARs to be loaded, 16 bits
IMMEDIATE - Immediate value for address calculation, 16 bits

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 13 / 34

Utility

FETCH - 0x00 - Loads one-or-more ILARs

Figure: LARK Utility Instruction Format

OP DST SRC1 SRC2 NUM IMM

8 8 8 8 16 16

OP - Opcode, 8 bits
DEST Destination ILAR - 8 bits
SRC1 - ILAR who’s address field acts as a base address, 8 bits
SRC2 - DLAR to use for the offset, 8 bits
NUM - Number of contiguous ILARs to be loaded, 16 bits
IMMEDIATE - Immediate value for address calculation, 16 bits2

0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Utility

• The only Utility instruction
• Same addressing mode as LOAD/STORE, but with an ILAR as base
• Generated by Assembler during packing

Arithmetic

Table: LARK Arithmetic Instruction Behaviors

Instruction Function

ADD DST=S1+S2

SUB DST=S1-S2

MUL DST=S1*S2

DIV DST=S1/S2

MOD DST=S1%S2

AND DST=S1&S2

OR DST=S1|S2

XOR DST=S1^S2

NEG DST=∼S1

SLL DST=S1<<IMM

SRA DST=S1>>IMM (always sign extend result)

SRL DST=S1>>IMM

SLT DST=S1>S2

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 14 / 34

Arithmetic

Table: LARK Arithmetic Instruction Behaviors

Instruction Function

ADD DST=S1+S2

SUB DST=S1-S2

MUL DST=S1*S2

DIV DST=S1/S2

MOD DST=S1%S2

AND DST=S1&S2

OR DST=S1|S2

XOR DST=S1^S2

NEG DST=∼S1

SLL DST=S1<<IMM

SRA DST=S1>>IMM (always sign extend result)

SRL DST=S1>>IMM

SLT DST=S1>S2

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Arithmetic

• Reasonable assortment, maps easily to useful languages
• Shifts are sketchy on some types, just doing them naively on bits

Arithmetic (2)

Assembly Format:
OP DST[DESTOFF], SRC1[OFF1], SRC2[OFF2], IMM

OP - Opcode Field, 8 bits
DST - Destination LAR, 8 bits
SRC1 - First Operand Source LAR, 8 bits
SRC2 - Second operand source LAR, 8 bits
OFF1 - Field offset in the first source LAR (for scalar ops), 8 bits
OFF2 - Field offset in the second source LAR (for scalar ops), 8 bits
DESTOFF - field offset in the destination LAR (for scalar ops), 8 bits
IMM - Immediate value, 8 bits

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 15 / 34

Arithmetic (2)

Assembly Format:
OP DST[DESTOFF], SRC1[OFF1], SRC2[OFF2], IMM

OP - Opcode Field, 8 bits
DST - Destination LAR, 8 bits
SRC1 - First Operand Source LAR, 8 bits
SRC2 - Second operand source LAR, 8 bits
OFF1 - Field offset in the first source LAR (for scalar ops), 8 bits
OFF2 - Field offset in the second source LAR (for scalar ops), 8 bits
DESTOFF - field offset in the destination LAR (for scalar ops), 8 bits
IMM - Immediate value, 8 bits2

0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Arithmetic (2)

• offsets and the immediate are optional in asm, and assumed zero if
not defined.

Arithmetic (3)

Table: LARK Arithmetic Instruction Encodings

Mnemonic Encoding (Bin) Encoding (Hex)

ADDS/ADDV 0b10?00000 0x80/0xA0

SUBS/SUBV 0b10?00001 0x81/0xA1

MULS/MULV 0b10?00010 0x82/0xA2

DIVS/DIVV 0b10?00011 0x83/0xA3

MODS/MODV 0b10?00100 0x84/0xA4

ANDS/ANDV 0b10?00101 0x85/0xA5

ORS/ORV 0b10?00110 0x86/0xA6

XORS/XORV 0b10?00111 0x87/0xA7

NOTS/NOTV 0b10?01000 0x88/0xA8

SLLS/SLLV 0b10?01001 0x89/0xA9

SRAS/SRAV 0b10?01010 0x8A/0xAA

SRLS/SRLV 0b10?01011 0x8B/0xAB

SLTS/SLTV 0b10?01100 0x8C/0xAC
Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 16 / 34

Arithmetic (3)

Table: LARK Arithmetic Instruction Encodings

Mnemonic Encoding (Bin) Encoding (Hex)

ADDS/ADDV 0b10?00000 0x80/0xA0

SUBS/SUBV 0b10?00001 0x81/0xA1

MULS/MULV 0b10?00010 0x82/0xA2

DIVS/DIVV 0b10?00011 0x83/0xA3

MODS/MODV 0b10?00100 0x84/0xA4

ANDS/ANDV 0b10?00101 0x85/0xA5

ORS/ORV 0b10?00110 0x86/0xA6

XORS/XORV 0b10?00111 0x87/0xA7

NOTS/NOTV 0b10?01000 0x88/0xA8

SLLS/SLLV 0b10?01001 0x89/0xA9

SRAS/SRAV 0b10?01010 0x8A/0xAA

SRLS/SRLV 0b10?01011 0x8B/0xAB

SLTS/SLTV 0b10?01100 0x8C/0xAC

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Arithmetic (3)

• One bit set to switch from scalar operand to LAR-At-A-Time vector
ops

Flow Control

Table: LARK Flow Control Instructions

Mnemonic Encoding (Bin) Encoding (Hex)

SEL 0b11000000 0xC0

CALL 0b11000001 0xC1

RETURN 0b11000010 0xC2

OP - Opcode Field, 8 bits
COND - Condition LAR, 8 bits
CONDOFF - Offset into condition LAR, 8 bits
TGT1 - Target ILAR for nonzero condition, 8 bits
OFF1 - Offset into nonzero target ILAR, 8 bits
TGT2 - Target ILAR for zero condition, 8 bits
OFF2 - Offsets into zero target ILAR, 8 bits
PAD - Pad bits, 8 bits

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 17 / 34

Flow Control

Table: LARK Flow Control Instructions

Mnemonic Encoding (Bin) Encoding (Hex)

SEL 0b11000000 0xC0

CALL 0b11000001 0xC1

RETURN 0b11000010 0xC2

OP - Opcode Field, 8 bits
COND - Condition LAR, 8 bits
CONDOFF - Offset into condition LAR, 8 bits
TGT1 - Target ILAR for nonzero condition, 8 bits
OFF1 - Offset into nonzero target ILAR, 8 bits
TGT2 - Target ILAR for zero condition, 8 bits
OFF2 - Offsets into zero target ILAR, 8 bits
PAD - Pad bits, 8 bits

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Flow Control

• Select with SLT and XOR gets common general flow control
constructs

• Stack is preliminarily packed into LARs, but could be skewed to
multiple offsets by type

• WHY 8’b OFFSETS, 2048/64=32, only need 5b. What the hell
2010-me? Was that to maintain byte alignment?

• CALL and RETURN are unconditional to the first target, right?
• Discuss calling behavior? Just the basic “two options, pack

arguments into a DLAR vs. DLAR-per-Type?”

Example

1 sample (i n t ∗ i , i n t ∗ j , i n t ∗ k)
2 {
3 i=j+k ;
4 k=j&k ;
5 }

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 18 / 34

Example

1 sample (i n t ∗ i , i n t ∗ j , i n t ∗ k)
2 {
3 i=j+k ;
4 k=j&k ;
5 }

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Example

•

Assembly Example

LARK MIPS

1 LOADSW D1 D31 0 j
2 LOADSW D2 0 D1 0
3 LOADSW D3 D31 0 k
4 LOADSW D4 0 D3 0
5 LOADSW D5 D31 0 i
6 LOADSW D6 0 D5 0
7 ADDS D6 D2 D4
8 ANDS D4 D2 D4

1 LW $t1 , j ($sp)
2 LW $t2 , 0($t1)
3 LW $t3 , k ($sp)
4 LW $t4 , 0($t3)
5 LW $t5 , k ($sp)
6 LW $t6 , 0($t4)
7 ADD $t6 , $t2 , $t4
8 SW $t6 , 0($t5)
9 LW $t2 , 0($t1)

10 LW $t4 , 0($t3)
11 AND $t4 , $t2 , $t4
12 SW $t4 , 0($t3)

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 19 / 34

Assembly Example

LARK MIPS

1 LOADSW D1 D31 0 j
2 LOADSW D2 0 D1 0
3 LOADSW D3 D31 0 k
4 LOADSW D4 0 D3 0
5 LOADSW D5 D31 0 i
6 LOADSW D6 0 D5 0
7 ADDS D6 D2 D4
8 ANDS D4 D2 D4

1 LW $t1 , j ($sp)
2 LW $t2 , 0($t1)
3 LW $t3 , k ($sp)
4 LW $t4 , 0($t3)
5 LW $t5 , k ($sp)
6 LW $t6 , 0($t4)
7 ADD $t6 , $t2 , $t4
8 SW $t6 , 0($t5)
9 LW $t2 , 0($t1)

10 LW $t4 , 0($t3)
11 AND $t4 , $t2 , $t4
12 SW $t4 , 0($t3)2

0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Assembly Example

• if the values are close together, the memory accesses would be a
single LAR load

• we don’t have to statically know if they fit in a LAR, processor will
leverage the alias automatically

• Memory: 0-5 to 9
• Reads: 0-3 to 9
• Writes: 0-2 to 2
• Count: 9
• We could do a whole LAR-wide vector for free

Compiling for LARs

Code Generation
I Normal-ish, favors vectorization

LAR Allocation
I NOT NORMAL

Instruction Packing
I FETCH insertion

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 20 / 34

Compiling for LARs

Code Generation
I Normal-ish, favors vectorization

LAR Allocation
I NOT NORMAL

Instruction Packing
I FETCH insertion

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Compiling for LARs

• And continuation tails for ILARs

LLVM

“The LLVM Project is a collection of modular and reusable compiler
and toolchain technologies”

LLVM’s TableGen can’t represent a LAR

IR promotes values to machine words

IR is in SSA form

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 21 / 34

LLVM

“The LLVM Project is a collection of modular and reusable compiler
and toolchain technologies”

LLVM’s TableGen can’t represent a LAR

IR promotes values to machine words

IR is in SSA form

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

LLVM

• LLVM used to be ”Low Level Virtual Machine” but they
de-acronymed years ago

• TableGen is their architecture description tool, used for instructions
and registers

• IR promotes all things to machine word.
• Didn’t realize SSA was undesirable at the time
• No SSA form, PREFER reuse of locations

After LLVM Fell Through

Specified LARc

Wrote ANTLR grammar

Researched ancestor technologies for inspiration

A diversion with LARKem

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 22 / 34

After LLVM Fell Through

Specified LARc

Wrote ANTLR grammar

Researched ancestor technologies for inspiration

A diversion with LARKem

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

After LLVM Fell Through

• ANother Tool for Language Recognition
• Used antlr 2 out of familarity and C support

LARKem

Function-per-opcode

Layers and layers of macros
I Opcode type macro calls DLAR accessor macro...

Never really worked
I Instructions unit-test out
I Frontend, memory interface never complete

Not the point, I wrote it to verify LARK specification + sanity
I and to feel like I was doing something while wandering the woods

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 23 / 34

LARKem

Function-per-opcode

Layers and layers of macros
I Opcode type macro calls DLAR accessor macro...

Never really worked
I Instructions unit-test out
I Frontend, memory interface never complete

Not the point, I wrote it to verify LARK specification + sanity
I and to feel like I was doing something while wandering the woods

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

LARKem

• Also to feel like I was accomplishing something while wandering in
the woods

Wandering in the woods

Looked at several ancestor technologies

VLIW/EPIC

Tagged architectures

Managed Memories

Vector/SWAR/SIMD machines

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 24 / 34

Wandering in the woods

Looked at several ancestor technologies

VLIW/EPIC

Tagged architectures

Managed Memories

Vector/SWAR/SIMD machines

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Wandering in the woods

• also scratchpads? We do have that non-uniform addressed memory
thing.

• also decoupling efforts like the CSPI MAP 200?
• Largely ”efforts to cheat the VonNeumann Bottleneck”

VLIW

Itanium
I Compiler must manually slot instructions
I Dynamic memory and static scheduling
I ALAT

Transmeta
I Compiler solution? - Don’t
I Dynamic translation

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 25 / 34

VLIW

Itanium
I Compiler must manually slot instructions
I Dynamic memory and static scheduling
I ALAT

Transmeta
I Compiler solution? - Don’t
I Dynamic translation

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

VLIW

• Itanium announced 1989, delivered 2001. Bad times.
• Abandonment of (DEC/COMPAQ) Alpha, (SGI) MIPS, (HP)

PA-RISC to pile on
• Itanic.
• ALAT = Advanced Load Address Table, most akin to a LAR in

production
• ld.a instructions to preload into associative memory, with address

tags, test with ld.c
• There never was a native compiler for Transmeta, just CMT (Code

Morphing Software)
• Their internal arch didn’t even have a MMU
• Eventually everyone did this by fancy reassembly ”microcoding”

onto multi-issue pipelines to schedule around memory
• First lesson: Dynamic Memory + Static Scheduling = Fail
• Upon reflection: We can KEEP THINGS STATIC

Tagged Architectures

Add metadata to some part of memory

Capability Architectures

In memory vs In Register

Most common still around: NX bit

Modal instructions and status registers

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 26 / 34

Tagged Architectures

Add metadata to some part of memory

Capability Architectures

In memory vs In Register

Most common still around: NX bit

Modal instructions and status registers

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Tagged Architectures

• Large penalty for extra memory traffic
• Lisp Machines: MIT, 1981 used 2+ extra bits per machine word for

type tags
• iAPX 432:Intel, 1981 Used 128b object descriptors 32b access

descriptors
• Another epic fail by Intel
• Co-designed with languages
• Set IEEE 754 Rounding mode
• RISC V vector extension uses configuration registers for vector

shaping

Managed Memories

Scratchpads

Compiler Prefetch

Decoupled Fetch

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 27 / 34

Managed Memories

Scratchpads

Compiler Prefetch

Decoupled Fetch

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Managed Memories

• Scratchpads are an extra address space: non-portable with different
size

• Ex: ClearSpeed, Cell Broadband Engine, CUDA Cores ”Shared
Memory”

• Compiler-Guided prefetch: Stomping via. Associativity, optional,
often ignored

• Explicit prefetch, locking lines, etc.
• Decoupled Fetch: CSPI MAP200; Access (memory) Processor

feeding queues to + execute processor

Vector Machines

Mostly programmed with intrinsics
I larc’s type system!

Typically managed by a scalar host processor

Vectorization
I SLP: Superword-Level Parallelism - assemble independent scalars
I Stripmining: Unroll loops to vector width

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 28 / 34

Vector Machines

Mostly programmed with intrinsics
I larc’s type system!

Typically managed by a scalar host processor

Vectorization
I SLP: Superword-Level Parallelism - assemble independent scalars
I Stripmining: Unroll loops to vector width

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Vector Machines

• (st)ardent Titan used MIPS, GPUs use PCs, etc.
• SIMD as the current dominant species
• This was actually useful
• Common elements: Greedy algorithms

Compiling with LARs

LARs’ address tags fundamentally change the problem

Many similarities to SIMD/SWAR/Vector compilation

Many similarities to memory layout problem

Scheduling instruction fetches is also a problem

Wrote preliminary AIK specification for LARK

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 29 / 34

Compiling with LARs

LARs’ address tags fundamentally change the problem

Many similarities to SIMD/SWAR/Vector compilation

Many similarities to memory layout problem

Scheduling instruction fetches is also a problem

Wrote preliminary AIK specification for LARK

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Compiling with LARs

• Instruction fetches is a problem for the assembler
• ”Assembler Interpreter from Kentucky”
• AIK isn’t fancy enough to do this on its own, but it’s a start
• No constant pooling, doesn’t have facility for insertion, etc.
• Does know about multiple segments.

LARc

C-like language

Types matching LARK tag types (similar to c99 <stdint.h> types)

Native-width vectors (like SIMD vector intrinsic types)

Implemented as an ANTLR2 grammar

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 30 / 34

LARc

C-like language

Types matching LARK tag types (similar to c99 <stdint.h> types)

Native-width vectors (like SIMD vector intrinsic types)

Implemented as an ANTLR2 grammar

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

LARc

• Generating an AST so I could start playing with walkers to generate
• ex. int32t, uintvec16x128

LAR Allocation

A naive algorithm for DLAR allocation

For the first variable of a type seen in the current block being
analyzed, select an unused memory region, mark it with the
appropriate type, and place the value in it

for subsequent values of the same type, load them consecutively into
the open DLAR for that type

when the current DLAR for the type being allocated is full, allocate
another one at the next available location

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 31 / 34

LAR Allocation

A naive algorithm for DLAR allocation

For the first variable of a type seen in the current block being
analyzed, select an unused memory region, mark it with the
appropriate type, and place the value in it

for subsequent values of the same type, load them consecutively into
the open DLAR for that type

when the current DLAR for the type being allocated is full, allocate
another one at the next available location

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

LAR Allocation

• Basically, segment per type
• Some similarities to Linear Scan allocators (orig. 1999

Poletto/Sarkar) - spent a lot of time trying to map their algorithms
to my problem

• No NP-hard problems like graph coloring

LAR Allocation Variations

separating allocations of arrays from scalars so that arrays begin on a
LAR-size aligned boundary

growing the different-type regions from widely separated base
addresses

analysis around struct like data structures to ensure that
like-members are serialized into like-offsets

analogous situation for stack frames

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 32 / 34

LAR Allocation Variations

separating allocations of arrays from scalars so that arrays begin on a
LAR-size aligned boundary

growing the different-type regions from widely separated base
addresses

analysis around struct like data structures to ensure that
like-members are serialized into like-offsets

analogous situation for stack frames

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

LAR Allocation Variations

• All these things are to encourage natural packing/extract
parallelism.

• LARs associative copy for same base address, so mixed-type data is
OK (just use 2 names)

Conclusion

LAR allocation is not analogous to register allocation, it’s a packing
problem

“What existing compilation techniques can be adapted to LARs”
I Very few

“What technologies are required to compile for LARs?”
I Good news: Mostly greedy algorithms
I Bad news: Large compilation units & extracting parallelism

Making things static vs. doubling-down on dynamism

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 33 / 34

Conclusion

LAR allocation is not analogous to register allocation, it’s a packing
problem

“What existing compilation techniques can be adapted to LARs”
I Very few

“What technologies are required to compile for LARs?”
I Good news: Mostly greedy algorithms
I Bad news: Large compilation units & extracting parallelism

Making things static vs. doubling-down on dynamism

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Conclusion

• Speculation attacks and timing attacks aren’t possible on static
machines.

• Dynamic means lots of active circuitry consuming power.

Future Work

Making this stuff really work

An assembler than can perform automatic FETCH insertions

Virtual Memory for LARK

Add masking to LAR vector instructions (Or SWARs?)

Paul S. Eberhart A Compiler Target Model for LARs 2019-04-17 34 / 34

Future Work

Making this stuff really work

An assembler than can perform automatic FETCH insertions

Virtual Memory for LARK

Add masking to LAR vector instructions (Or SWARs?)

2
0
1
9
-0
4
-1
6

A Compiler Target Model for LARs

Future Work

• Virtual Memory: Physical tag v.s. Virtual tag: v-tag potential
aliasing, p-tags would have to have TLB lookups every time a tag is
touched

• I can’t build a fancy parallelizing, analyzing compiler solo (For an
MS or at all, millions of man-hours), so stuck by disjoint from early
tools.

