

Embedded Systems

Detour: Number Systems
● Humans work in Base Ten (Decimal)

● Each digit is 0-9, each place is 10^place

● Computers work in Base Two (Binary)
● Each digit is 0 or 1, each place is 2^place
● Most devices use “Two's Compliment” which allows for

signs with only the two symbols.
● Decimal/fractional numbers are usually represented as

Floating Point Numbers (“Floats”) that use several
number fields

● Often Hexadecimal (Hex – Base 16, symbols 0-F) or
Octal (Base 8, symbols 0-7) are used as a
compromise

Embedded Systems
● Computers, customized for a specific task
● Range in size and complexity from flashlights to

airplanes.
● Most often, Microcontrollers

● Fixed Memory, RAM, CPU and I/O on one chip.

● Other flavors:
● ASIC
● FPGA/Programmable Logic
● DSP
● Single Board Computers
● Special Function Computers

History

● D17 Computer (Minuteman Missiles) in 1961
● Apollo Guidance Computer in 1966
● Intel 4004 Single-Chip CPU in 1971
● TI TMS 1000 in 1971-1974

● Powers the Speak-and-Spell

● Atmel and Microchip introduce programmable
models in 1993.

D17D17 4004 Package

4004 Mask TMS1000

Anatomy

● Attached to something to Monitor and/or
Control

● Less user-modifiable
● Usually less powerful
● Many embedded computers per recognizable

computer.
● Including several INSIDE the computer.

● SCADA – Supervisory Control And Data
Acquisition

Microcontroller Families

● Order of 20 common families in circulation
● Many more obscure designs around.

● Many are closely related to or directly
descended from “Full” computers.

● 8-Bit micros make up about half the CPUs sold
every year.

8-Bit

● 8051 – Since 1980, but direct descendent of
Intel's MCS-48 from 1976.

● PIC - “Peripheral Interface Controller”
ubiquitous, around since 1975.

● 68HC11 – uC cousin of the Motorola 6800 from
1985.

● Z80 – Fancier Intel 8080, same parent as x86
PCs.

● AVR – Atmel's line from 1996, descendent of
Norweigan college students' design.

16- and 32- Bit

● MSP430 – TI 16-bit design, from the 1990s, like
a PDP-11.

● ARM – Designed for PCs in 1987, good for
mobile, licensed to everyone.

● ColdFire – Motorola 68K's embedded variant.
● X86 Embedded Boards

Arduino

● Project started in Ivrea, Italy in 2005
● Based on earlier Processing and Wiring projects.

● Effort to make uCs accessible to hobbyists,
artists, and other non-engineers.

● Based on an AVR ATMega8 family part
● C++ like language, Java IDE
● Great for rapid prototyping

LEDs

● Light Emitting Diode
● Requires a Current Limiting Resistor

Embedded Development Two
Putting Parts Together

Breadboard

● Each numbered row is
connected internally, up to the
middle separator.

● Each marked Bus Column is
connected internally
● Sometimes spit in the middle

● DIP ICs straddle the middle
● Good for prototyping, bad for

reliability and sensitive signals.

Breadboard Best Practices

● Neatness Counts. A lot.
● Color Code wires
● Use wires of approximately the correct length
● Start with ICs – always orient them the same way

● Then add power and ground
● Then add internal connections
● Then add chip-to-chip connections
● Then everything else

● Tape flags and other labels are your friend

Now What?

● Breadboards are expensive, labor-intensive, bulky, and fragile.

● Wire Wrap
● Out of vogue, point-to-point wired on long pins

● Perfboard
● Accessible and Universal
● Not repeatable, error prone

● Printed Circuit Boards
● Design with CAD software, like gEDA and EAGLE

– Send away

– Use copperclad with printer or photo transfer and chemical baths.

– Or, a mill it

● Hobby tool called Fritzing

Examples

● Wire Wrap ● Household Etching

Perfboard V. PCB

Buttons and Switches

● A simple button just makes or breaks a
connection

● Need some kind of reliable binary on/off
● Unconnected pin = Unknown value

● Pull a signal between Vcc and Gnd
● Dead zone between 1 and 0 voltage - “Hysteresis”
● Pullup and Pulldown Resistors

● Many kinds of switch

Buttons and Switches (cont'd)

● SPST
● Single-Pole Single-

Throw

● SPDT
● Single-Pole, Double

Throw

● NC/NO - Normally Connected / Normally Open

Pullup and Pulldown

Integrated Pullups

● Many devices, especially microcontrollers, have
built-in pullup resistors

● Enable in software when setting up a pin/port
● On an Arduino, the following code will pull up

an input pin.

pinMode(pin, INPUT); // set pin to input

digitalWrite(pin, HIGH); // turn on pullup
resistors

Switch Bounce

● Flipping a switch or pressing a button doesn't
make a single clean transition
● Read too fast, get the wrong value
● Extra events on “when the switch changes”

Switch bounce image courtesy of Maxim Semiconductor

Handling Bounce

● Hardware Methods
● RC Circuit
● Latch
● Monostable

multivibrator
● Timer
● State machine

● Common factor:
Require additional
parts.

● Software Methods
● Fixed Delay
● Timer/Comparator

Debouncing on the Arduino
int val;

int val2;

int buttonState;

void loop(){

 val = digitalRead(switchPin);

 delay(10);

 val2 = digitalRead(switchPin);

 if (val == val2) {

 //Act on Input here

Example from LadyAda.net Arduino Tutorial

Alternative technique example at:
http://www.arduino.cc/en/Tutorial/Debounce

Communication

● Main Choices:
● Serial vs. Parallel

– Serial requires fewer pins
– Parallel allows more data per action
– Different decoding requirements

● Synchronous vs. Asynchronous
– Asynchronous requires a start/stop symbol
– Synchronous requires a separate sync signal

Parallel Protocols

● Bundles of Discrete
Logic Signals

● One Hot/Encoded
symbols

● IEEE 1284 PC
Parallel Port

● PCI (not express)

Serial Protocols

● Cheaper to implement (Cables and
transceivers)

● Less susceptible to interference
● Crosstalk, Clock Skew

● Speed issue:
● Only one bit moved at a time

● Complexity Often discussed via Wire Count
● 9-wire, 5-wire 4-wire, 3-wire, 2-wire and 1-wire

common

Common Protocols
● RS232

● From 1962
● Compliant designs must handle ±25V

– Most don't, and run at 3.3V or 5V

● SPI (“Four Wire”)
● Built in to many uC designs, including Atmega8

● I2C (“Two Wire”)
● SMBus (computer sensors) is a subset

● 1-Wire
● Only one wire and a ground connection

RS232
● Option conventions

● Speed: 1200, 2400, 4800, 9600, 14400, 19200,
38400, 57600 and 115200 bit/s

● (Data/Parity/Stop)
– Data: Number of data bits per frame, 5,6,7, 8 or 9
– Parity : None, Odd, Even, Mark, or Space
– Stop: Number of sync bits at end of frame (usually 1)

● Flow Control
– RTS/CTS, DTR/DSR (using wires)
– XON/XOFF (escaped Signals)
– None or Higher Level

I2C/TWI

● Very popular for small, low power board integration
● Up to 112 Devices

● One master, switchable at any time

● 100Kbit/s low power mode, up to 3.4Mbit/s high speed
mode

● Single Ended
● One Wire signals, one wire carries reference

● Clock Stretching
● Any slave device can hold the clock until it is ready to respond

Arduino

● Has SPI and RS232 Support
● Communication between the Arduino and PC

are via RS232 - 9600 (8/N/1)
● Bridged from USB with FTDI FT232RL or

programmed ATmega8U2

● Serial library is always included
● Serial.begin(9600); in setup
● Serial.println(); to write

● Have to #include <SPI.h> for SPI support

Homework

● Write a sketch that correctly counts the number
of times a button attached to the Arduino has
been pressed, and prints it to the serial monitor.

● Bring a copy of your code to turn in next week.

Analog I/O
Datasheets

Digital Devices, Analog World

● Analog = Continuous Time, Continuous Value
● Digital = Discrete Time, Discrete Value
● Microcontrollers, like all modern computers, are

digital devices.
● The world is an analog place
● Input: Analog to Digital Converters (ADC)
● Output: Digital to Analog Converters (DAC)

Terminology
● Range

● The spectrum of values a device can manage
– Usually Volts, Usually limited user-configuration

– Watch limits: -5V to +5V is not the same as 0-10V

● Resolution
● The number of discrete levels a device can encode

– Often quoted in Bits

● Equivalently: The smallest change the device can detect/produce
– Often quoted in Volts/Div

● Rate
● How fast/often the signal is sampled

– Must be twice as fast as the fastest signal to be sampled (Nyquist–
Shannon sampling theorem)

Terminology, contd.

● Signal-to-noise
● The relative size of the desired signal to

background signals

– Often quoted in dB – 10*log
10
(value)

● Linearity
● Most ADCs designed so each step is the same size

– Non-Linearity measures the deviation from that ideal
– Some ADCs are intentionally non-linear

Kinds of DAC
● R-2R Resistor Ladders

● Thermometer-coded DAC
● Voltage source per output value
● Turn on the closest match
● VERY expensive

● Most DAC is accomplished with PWM
● PWM – Pulse Width Modulation
● Requires only one pin, and a timer

PWM

● Carrier Frequency
● Limiting factor: Counter

resolution

● Filter to smooth out the
pulses

● Many devices require
no filtering
● Lights have Persistence

of Vision
● Motors have Inductance

Image courtesy of Arduino.cc

Kinds of ADC

● About a dozen common varieties
● Tradeoff between complexity and Speed
● Many designs use a DAC, and a Comparator to

iteratively match the input
● Design goal: Lowest sufficient resolution
● Available as discrete components
● Usually built-in to uCs, included in some

sensors.

Flash ADC

● Large bank of comparators
● Tests against each possible

encoded value
● The closest match is selected

● 2N – 1 comparators for N bits of
resolution

● Extremely fast
● Extremely expensive
● Hard to manufacture
● Subject to noise
● Generally low resolution

Ramp Compare

● Uses a DAC to create a comparison signal
● Single comparator continuously compares input

to generated signal
● Repeatedly “ramps” DAC over the range
● Records DAC value when signals match

Image from http://www.allaboutcircuits.com/vol_4/chpt_13/5.html

Successive Approximation

● Performs a binary search of
the range with a DAC and
comparator
● Set first bit to 1; generate value

on DAC; compare.

● If V
in
<V

dac
, reset to 0; else, keep

bit as 1
● Repeat for next bit
● Turn on EOC when match

achieved

● Slow, but relatively simple and
protected from errors

Arduino

● AnalogRead()
● Successive Approximation ADC
● 6 channels, 10-bit resolution, 10kHz
● Built-in AREF

– analogReference(type)
– Type is DEFAULT=5V, INTERNAL=1.1V, EXTERNAL

● AnalogWrite()
● PWM
● 490Hz carrier

A final Assignment

● Using the parts and skills from the unit, and
anything else you might want to include, build
something nifty.

● We have a pool of extra parts available:
● 7-Segment LED Display
● RGB (tricolor) LED (Color mixing)
● Piezo Buzzer (Tiny, tinny, directly drivable speaker)
● Temperature Sensor

Reading Datasheets

● Key skill, developed by practice
● Formats NOT well standardized, even for

similar parts
● Largely about filtering for what you want
● Kind of an art
● Final assignment parts (and some other bits

and pieces) as examples

Acknowledgments

● Unless otherwise marked, images used in this
presentation are from the Wikimedia Commons

